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The magic of prediction markets

Prediction markets are remarkable information aggregators:

• Can work as well or better than alternative forecasting
methods (Figlewski, 1979; Roll, 1984; Pennock et al., 2001;
Wolfers and Leigh, 2002; Berg et al., 2008)

• Largely self-financing

• Perhaps most importantly, often the only source of
probability estimates on important questions
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The magic of prediction markets

Partly for this reason, prediction markets are currently
undergoing something of a renaissance:

• Polymarket (2017-): ∼$42 million traded over last 30 days

• Kalshi (2021-): ∼$22 million traded in July 2023

• Manifold (2021-): largest prediction market by either
number of users or number of daily trades
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The perils of manipulation

Despite this promise, prediction markets are hampered by
long-standing concerns about manipulability:

• Plenty of manipulation attempts in historical prediction
markets (Rhode and Strumpf, 2004)

• Concerns about manipulation were used to justify the
cancellation of PAM (Hanson et al., 2006)

• Stiglitz: ‘[trading] could be subject to manipulation,
particularly if the market has few participants — providing
a false sense of security or an equally false sense of alarm’

• Concerns about manipulability also prominent in more
recent media coverage (FT, 2023; NYT, 2023; Vox, 2024)
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Research questions

This all raises the questions:

• Are these concerns about manipulability justified?

• If so, which markets are most manipulable?

Answering such questions is also an indirect test of the efficient
market hypothesis (Fama, 1970):

• If markets efficiently aggregate all relevant information,
then the effects of random trades should be transient.

• If markets are inefficient, the effect of random trades could
be more persistent.
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This paper

• First large-scale field experiment on the manipulability of
prediction markets (n = 817 markets)

• We randomly place yes bets (+5 p.p.), no bets (-5 p.p.) or
do nothing (the ‘control’)

• We collect hourly price data over a 30 day period (∼620k
price observations in total) along with rich data on market
features (historic trading volume, close date, etc.)

• To help interpret our results, we also build a theoretical
model of the impact of price manipulation
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Preview of findings

• Prediction markets can be manipulated: the effects of our
bets are visible even 30 days after our trades

• However, as predicted by our model, the effect of
manipulation decays over time: on average, prices have
reverted by about 24% after 1 week

• Markets with more traders, greater trading volume, and an
‘external’ source of probability estimates are harder to
manipulate
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Related literature I

(1) The original inspiration: Camerer (1998)
Comment: very different environment, so not surprising that we
obtain very different results
(2) Analysis of historical manipulation attempts (Rhode and
Strumpf, 2004, 2006; Hansen et al., 2004; Rothschild and Sethi,
2016)
Comment: hard to know the counterfactual price path!
(3) Lab experiments on manipulation (Plott and Sunder, 1982;
Hanson et al., 2006; Oprea et al., 2008; Veiga and Vorsatz,
2009; Buckley and O’Brien, 2017; Choo et al., 2022)
Comment: only study a small number of markets, which are in
any case very different from real prediction markets
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Related literature II

(4) An experiment on the IEM: Rhode and Strumpf (2006)
Comment: just 15 bets in total on 2 (inter-related) markets, so
only powered to detect immediate effects
(5) Models of prediction markets (Gjerstad, 2005; Manski, 2006;
Wolfers and Zitzewitz, 2006; Ottaviani and Sørensen, 2007;
Hanson and Oprea, 2009; Chen et al., 2015)
Comment: we study manipulation within a Gjerstad (2005)
style model altered to allow for disequilibrium prices and
non-price taking behaviour
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Manipulation in theory
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A model of manipulation

• We consider a single (binary) market.
• A yes share pays out =C1 iff the event takes place; a no
share pays out =C1 iff the event does not take place

• A trader who buys (e.g.) q yes shares has expected utility

πiu(w + q − C (q)) + (1− πi)u(w − C (q))

where πi is their belief about the chance that the event will
happen, w is their wealth, C (q) is the cost of the shares

• We assume u′ > 0, u′′ < 0, limws→0 u′ = ∞ and decreasing
−u′′/u′ (DARA)

• The cost C (q) is determined by an AMM that implements
the constant product rule.
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The constant product rule

To illustrate, suppose that

• The AMM’s reserves are (y,n) = (10, 10). Note: 102 = 100.

• If I decide to spend =C1 on yes shares, the AMM converts
this into 1 yes share and 1 no share.

• Its reserves become (11, 11). But 112 = 121 ̸= 100!

• It thus gives me q yes shares, where (11− q)× 11 = 100,
i.e. q ≈ 1.9.
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Costs under the constant product rule

Lemma 1
Under the constant product rule,

• MC (0) = n/(n + y)
• MC ′(q) > 0 for all q ≥ 0
• limq→∞MC (q) = 1

Similarly,
• limq→0+ AC (q) = n/(n + y)
• AC ′(q) > 0 for all q > 0
• limq→∞AC (q) = 1

14 / 49



Illustration with n = y = 10
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Optimal trading

Lemma 2
Define p = n

n+y . Then
• If πi > p, the trader will buy a positive quantity of yes

shares.
• If πi = p, the trader will not hold any shares.
• If πi < p, the trader will buy a positive quantity of no
shares.
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Optimal trading

Lemma 3
Suppose that the price increases from p to p +∆. Then

• Traders with πi ≥ p +∆ will decrease their holdings of yes
shares.

• Traders with πi ∈ (p, p +∆) will switch from holding yes
shares to holding no shares.

• Traders with πi ≤ p will increase their holdings of no
shares.
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Simulations

We use simulations to study the price adjustment path:
• The market is initialised and given t periods to reach a

stable state; a manipulator then increases the price by 0.05
• The market is then given t ′ periods to adjust
• At each time, one trader is randomly selected to re-adjust
her holdings; thus, we run each simulation 5,000 times

• As an extension, we allow for learning:

π′
i = λπi + (1− λ)p

• In the baseline case, n = y = w = t = t ′ = 100, s = 10,
λ = 0; we also assume that beliefs are uniform
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Results (baseline case)
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Varying the number of traders: m = 10 vs m = 60
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Varying the learning rate: λ = 0 vs λ = 0.8
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Varying agreement: uniform vs common beliefs
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Summary

• The model predicts that manipulation can have persistent
effects even without price learning

• However, the model also predicts the effect of manipulation
should be somewhat ‘undone’ by future traders

• The model predicts that markets with more traders, more
‘activity’, and less learning (e.g due to the existence of
external information) should revert faster
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Institutional background
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Manifold markets
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Manifold markets
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Manifold markets
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Manifold markets

In some respects, Manifold is an unusual platform:

• Markets are user created and resolved

• A large portion of trade is conducted by bots

• The markets run on Maniswap (a generalisation of the
constant product rule)

• Markets are run on a platform specific currency (‘Mana’)
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Incentives

Despite running on Mana, traders have various incentives to
make profitable trades

• Financial incentives: Mana can be converted to charitable
donations ($316k raised by Manifold users as of 16 May)

• Social-image incentives (enhanced by leaderboards)

• Self-image incentives (enhanced by personalised Brier
scores and calibration charts)
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Incentives

One highly ranked trader:

‘In the unusual world in which I find myself, for better or worse,
doing well on a prediction markets website is somewhat of a
badge of honour . . . I wish I had more noble motivations but,
alas, I think that’s a good chunk of it. Another important
motivation for me using Manifold relates to charitable giving.’
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Effect of the devaluation on GiveWell donations
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Predictive performance

Given these incentives, it is not surprising that the predictive
performance of Manifold is comparable to that of more
traditional platforms:

• The markets are generally well-calibrated

• In a study of the 2022 US midterm elections, Manifold
outperformed the more traditional prediction markets in
the sample (Sigma, 2024)

• Manifold achieves Brier scores that are comparable but
slightly worse than Metaculus (EA Forum, 2024)

• See also Servan-Schreiber et al. (2004)
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Calibration
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Experimental design
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The basic idea

• We conducted a large-scale and ‘market level’ field
experiment (n = 817)

• We randomly place yes bets (+5 p.p.), no bets (-5 p.p.) or
do nothing (the ‘control’).

• To see if manipulation yields persistent effects, one can
check if the gap in prices between the yes and no groups
disappears over time
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Exclusion criteria

We excluded markets that

• Resolve after 2025 or within 30 days, or started within the
last 7 days

• Had fewer than 10 traders (at the time of our trade)

• Were closely related to another market in our sample

• Cost more than 200M to manipulate in either direction by
5 percentage points
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Data

We collected

• Hourly price data, starting 24 hours before the bet and
continuing for 30 days (24× 31× 822 ≈ 610k prices in total)

• Activity measures: total volume of trade, number of
traders, number of comments, etc.

• Whether each market’s question was also on Metaculus

• Other information, including each market’s question,
opening date and closing date
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Timelines

• We pre-registered our experiment (with an analysis plan)
in December 2023

• We started making bets in December 2023 and finished in
April 2024

• We finished the main data collection in May 2024 (and
collected some follow-up data in June/July).
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Experimental results
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The markets in the sample
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Average prices over time (8 days)

41 / 49



Estimation

To study this formally, we estimate regressions of the form

pt,i = β0 + β11i(‘Yes’) + β21i(‘Control’) + β3p−1,i + ui

where
• pt,i is the price in market i at time t ≥ 0
• 1i(‘Yes’) is a dummy variable that equals 1 if market i is in

‘Yes’ group
• 1i(‘Control’) is defined analogously
• p−1,i is the price in market i just before the bet
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168 regression coefficients (yes vs no)
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168 regression coefficients (no vs control)
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Longer term results

• As we have seen, prices revert by about 25% on average
after 7 days

• After 30 days, they have reverted by about 32% on average
(a reduction in decay speed, as predicted by our model)

• Despite the expected inflation of standard errors over time,
effects are still significant (p < 0.01)

• Even after 60 days, effects remain significant (41%
reversion in total)
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Heterogeneity in 7 day effects

Above median Below median
Metaculus 0.053 0.077

24 hour volume 0.049 0.081
Total volume 0.069 0.081
Total traders 0.067 0.083
Comments 0.069 0.084
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Conclusions

• In their review of the existing evidence, Wolfers and
Zitzewitz (2004) state that manipulation attempts do not
have ‘much of a discernible effect on prices, except during a
short transition phase’.

• Our large-scale field experiment challenges this conclusion:
we can detect the effects of our manipulations even 30 days
after they made

• However, as predicted by our model, we also find
substantial reversion (∼25% after a week) and important
heterogeneities in the expected directions
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Conclusions

• Our findings somewhat confirm the concerns raised by
prediction markets’ critics

• However, they do not mean that prediction markets are
useless: even if manipulable, their prices can still be
somewhat informative (Hanson, 2004)

• Although non-causal, our heterogeneity results suggest that
making prediction markets more ‘active’ (higher volume,
more traders, etc.) can make them more robust to
manipulation attempts
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Conclusions

Our experiment also opens the door to a lot of future work, e.g.

• Manipulation via buzz (e.g. by leaving appropriately
chosen comments)

• Optimal manipulation (here, one anticipates a ‘U-shape’)
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