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1. Introduction

Prediction markets — that is, markets in which traders can bet on the outcomes of various
events — have proven to be powerful information aggregators. Existing research shows that
the prices that arise in prediction markets can predict outcomes as well if not better than
alternative forecasting methods such as expert polls (Figlewski, 1979; Roll, 1984; Pennock
et al., 2001; Wolfers and Leigh, 2002; Berg et al., 2008). In addition, while alternative
methods such as polling can be costly, prediction markets are largely self-financing. In
part for this reason, prediction markets currently constitute the only source of probability
estimates on many important questions. For example, although one can find prediction
markets on the outcomes of various geopolitical conflicts, it is difficult to obtain public
probability estimates on the outcomes of these conflicts through other means.

Perhaps due to these encouraging results, prediction markets are currently undergoing some-
thing of a renaissance. Although the prediction markets previously studied in the literature
(e.g. the Iowa Electronic Markets) were often small and developed for academic purposes,
recent years have seen the founding of several much larger prediction market platforms.
Polymarket, founded in 2017, often handles large volumes of trade: for example, over $380
million was traded on Polymarket in July 2024 alone. Kalshi, founded in 2021, also rou-
tinely handles tens of millions of dollars of trade on a monthly basis. Manifold Markets, also
founded in 2021, has become the largest prediction market website in the world as measured
by the number of markets hosted on the platform.

Despite this promise, prediction markets are hampered by long-standing concerns about
manipulability. Historically, it has not been uncommon for politicians to bet on themselves in
the hope of increasing the market’s assessment of their electoral winning chances (Rhode and
Strumpf, 2004, 2006). While this is one motivation for individuals to attempt to manipulate
prediction market prices, it is not the only one: for example, concerns that terrorists would
attempt to ‘distract’ onlookers from their true targets were cited during the cancellation
of the planned Policy Analysis Market in 2003 (Hanson et al., 2006).1 Concerns about the
manipulability of prediction markets remain prominent in more recent media coverage: see,
for example, FT (2023), NYT (2023) and Vox (2024).

Although it is clear that many would like to manipulate prediction markets, it is less clear
that such attempts would be successful. Indeed, according to most existing literature (dis-

1 In the words of one Nobel Laureate, ‘[trading] could be subject to manipulation, particularly if the
market has few participants — providing a false sense of security or an equally false sense of alarm’ (Stiglitz,
2003). While this concern may be valid in general, it is worth noting that the Policy Analysis Market would
not have allowed traders to bet on the locations or timings of terrorist events (Hanson and Oprea, 2009).
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cussed below), any manipulation attempt will be extremely shortlived in the sense that it
will be rapidly ‘undone’ by the behavioural responses of subsequent traders. Understanding
this issue also provides an indirect test of the efficiency of prediction markets (Fama, 1970).
If market prices only reflect the ‘fundamentals’, then the effects of random trades should be
transient. However, if markets are inefficient, the effect of random trades could persist.

In this paper, we study these questions using both theoretical and experimental methods.
On the theoretical side, we build the first model that traces out the path of prices in a
prediction market following a manipulation attempt. On the experimental side, we conduct
the first large-scale field experiment on the manipulability of prediction markets.

We begin by presenting our model. In the model, agents are risk averse and optimally choose
how to bet based on their beliefs about the likelihood that the event will take place. Prices
are determined using the algorithm that underpins the markets that we study experimentally.
Under this algorithm, prices are non-linear; and our traders understand this when they decide
how much to bet. In contrast to existing literature, our model does not assume competitive
equilibrium pricing. This allows us to avoid logical inconsistencies2 and to study the full
path of prices following a manipulation attempt (including ‘disequilibrium’ prices).

The model makes three important predictions about the impact of a manipulative trade.
First, the model predicts that manipulation can systematically affect the market price —
both in the short run (due to the need for behavioural adjustment), but also in the long-run
(e.g., due to ‘learning effects’). Second, however, the model also predicts that the effect of
manipulation should be partially ‘undone’ by future trades: for example, if a manipulator
increases the market price, then traders should believe that the price is ‘too high’ and take
actions to correct this. The speed of price reversion is predicted to decline as the price moves
back towards its original value. Third, the model suggests that the degree of reversion should
systematically vary by market type. For example, markets with more traders and less scope
for ‘learning’ from the market price should be harder to manipulate.

To test these predictions, we conduct the first-ever large-scale field experiment on the manip-
ulability of prediction markets. Unusually for a field experiment, our experiment takes place
at the market level: in total, we have n = 817 different prediction markets in our sample.
Our experiment involves randomly placing yes bets and no bets on different markets; we also
include ‘control’ markets in which we do not intervene. The yes bets are designed to increase
the price by 5 percentage points; likewise, the no bets decrease the price by 5 percentage

2 Specifically, competitive equilibrium assumes a continuum of traders, none of whom can move the
market price (Aumann, 1964); in contrast, the whole point of our model is to study the adjustment of prices
after the price is pushed in a particular direction by a trade.
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points. To investigate whether the effects of our bets persist, we then collect hourly price
data over a 30 day period (leading to ∼600,000 price observations in total). To understand
important heterogeneities, we collect rich data on each market’s type including the total
volume and number of traders at the point at which our bet takes place.

Our experiment yields three main sets of results. First, we show that the effects of our
manipulations are visible in the data even 60 days after they have occurred: market prices in
the ‘yes’ group are higher than they would otherwise have been, and market prices in the ‘no’
group are correspondingly lower. Second, however, as predicted by our theoretical model,
the behavioural responses of subsequent traders generate some reversion of prices towards
their original values. As in the model, reversion is relatively quick in the week following our
bets but slows as time progresses. Third, the degree of reversion varies across markets in
just the way that is suggested by our model. In particular, markets which are duplicated on
a different prediction platform (which provides an ‘external’ source of probability estimates),
markets with more traders, and markets with more ‘activity’ (measured, e.g., by the number
of comments left by traders) are more difficult to manipulate.

Taken together, our results imply that prediction markets can be manipulated — although
the extent to which any manipulation persists depends on market characteristics in system-
atic ways. This result is suggested not just by theory (e.g. due to learning effects), but also
appears in every sub-sample of the experimental data that we investigate. The success of
our manipulations may be due to their relatively small size: while a shock of 5 percentage
points is large enough to be statistically detectable, it appears to have been small enough
to result in plausible looking market probabilities. In contrast, very large shocks to market
prices may be insufficiently ‘persuasive’ to persistently move market prices.

Our paper builds on several literatures that study the manipulability of prediction markets.
An important precursor to our work is Camerer (1998), who studies the impact of making
random bets on particular horses in the context of pari-mutuel racetrack betting.3 Since
Camerer (1998)’s setting is not a prediction market, it differs from ours in multiple ways:
for example, Camerer (1998) studies a very different population of traders operating in
an environment with a different pricing rule and a substantially more rapid resolution of
uncertainty.4 In addition, unlike in our experiment, Camerer (1998) cancels his bets around
12 minutes after they have been made. For these reasons, it is perhaps unsurprising that we

3 See also Brown and Yang (2017) for a related experiment on ‘anchoring’.
4 In addition, since horse races are repeated, it is plausible Camerer (1998)’s bettors broadly agreed on

what the prices of different horses ought to be. As our model makes clear, this makes manipulating the
market price substantially more difficult and may help explain the contrast to our results and those that
Camerer (1998) obtains.

3



obtain very different results: while our trades have persistent effects even 60 days after they
are made, the effect of Camerer (1998)’s bets appear to vanish within around 20 minutes.

Somewhat closer to our study, a small literature attempts to trace out the impact of historical
manipulation attempts within prediction markets. For example, Rhode and Strumpf (2004,
2006) study attempts to manipulate US prediction markets in the early 20th century; while
Hansen et al. (2004) examines an attempt to manipulate prediction markets during the
1999 Berlin state elections.5 Such studies clearly establish that many have attempted to
manipulate prediction markets. However, it is difficult to assess whether such attempts were
successful using this approach since it is difficult to estimate the path that prices would have
taken in the absence of the manipulation attempt. Our approach entirely side-steps this
issue through use of a randomised field experiment.

The manipulability of prediction markets has also been studied by a series of laboratory ex-
periments: see Hanson et al. (2006); Oprea et al. (2008); Veiga and Vorsatz (2009, 2010); Jian
and Sami (2012); Deck et al. (2013); Buckley and O’Brien (2017) and Choo et al. (2022).6

However, the prediction markets created in the laboratory are typically quite different from
those observed in the field.7 Moreover, due to the logistical difficulty of constructing mar-
kets in the laboratory, it is typically only feasible to run at most a handful of markets in the
study. This makes identifying the impact of a manipulation difficult (especially given that
observations within a market cannot be treated as independent) and makes the kind of het-
erogeneity analysis that we conduct impossible. For these reasons, it is useful to complement
the existing laboratory evidence with evidence from the field.

Perhaps most relevant for our purposes, Rhode and Strumpf (2006) report the results of
an experiment on the Iowa Electronic Markets that involves making 15 bets in total on 2
(inter-related) markets. Since Rhode and Strumpf (2006) were interested in manipulating a
particular market (on the 2000 US Presidential Election), their experiment is very different
from the large-scale and across-market field experiment whose results we report here. For
this reason, our study is better powered to detect the long-run effects of manipulative trades.

Finally, although our paper contributes to the empirical literature on prediction markets,
we also contribute to the theoretical literature. In particular, we adapt ‘price theory’ style
models of prediction markets (Gjerstad, 2005; Manski, 2006; Wolfers and Zitzewitz, 2006)

5 See also Rothschild and Sethi (2016) for an examination of an apparent manipulation attempt during
the 2012 US President Election.

6 For laboratory evidence on prediction markets that does not study the question of manipulability, see
also Filippin and Mantovani (2023) and Mantovani and Filippin (2024).

7 For instance, they are populated by a different group of traders (typically undergraduate students) who
form beliefs based on quite stylised information about abstract topics (e.g. the number of balls in an urn).
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so that they can cast light on price dynamics following a manipulation attempt.8 To do
this, we relax the assumption that agents are price takers and that prices are determined
by competitive equilibrium; instead, agents in our model understand the extent to which
their trades will alter the market price. Our model is, to our knowledge, the first attempt
to theoretically trace out the path of prices following a price manipulation attempt.

The remainder of this article is structured as follows. Section 2 presents our theoretical
model; Section 3 describes the platform that we study experimentally; and 4 presents our
experimental design. Our empirical results are contained within Section 5. Section 6 con-
cludes with a discussion of the open questions raised by this research.

2. Manipulation in theory

In this section, we develop some theoretical expectations regarding the impact of a manip-
ulation attempt. As discussed earlier, our model builds on seminal work by Manski (2006),
Gjerstad (2005) and Wolfers and Zitzewitz (2006). In contrast to these papers, prices in our
model are determined by a common pricing algorithm instead of competitive equilibrium,
which allows us to study the adjustment path of prices following a shock. In addition, our
agents understand that their trades impact the market price and take this into account when
choosing how to trade.

Market. We consider a single market in which traders can bet on whether an event will or
will not take place. Traders can buy and sell yes shares, each of which pays out 1 currency
unit if and only if the event takes place. Likewise, traders can buy and sell no shares, each
of which pays out 1 currency unit if and only if the event does not take place. As pointed
out by Gjerstad (2005), one can assume without loss of generality that traders buy either
yes shares or no shares (but not both).

Traders. There are a finite number of traders, indexed by i ∈ {0, 1, ...,m}. Each trader
believes that the event will occur with probability πi ∈ [0, 1]; thus, the prior beliefs of traders
can differ. For simplicity, we assume that each trader has the same initial wealth w > 0 and
vNM utility function u : R+ 7→ R. Let qiy ≥ 0 and qin ≥ 0 denote trader i’s purchase of yes
and no shares respectively (as discussed before, either qiy = 0 or qin = 0). We assume that

8 For models in the ‘rational expectations’ tradition (from which we depart), see also Allen and Gale
(1992); Kumar and Seppi (1992); Hanson and Oprea (2009); Ottaviani and Sørensen (2007).
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each trader maximises expected utility, i.e.

E[u(qiy, qin)] =

πiu(w + qiy − C(qiy)) + (1− πi)u(w − C(qiy)) if qiy ≥ 0

πiu(w − C(qin)) + (1− πi)u(w + qin − C(qin)) if qin ≥ 0
(1)

where C(qiy) and C(qin) are the costs of purchasing yes and no shares. We assume that u is
twice differentiable with u′(ws) > 0 and u′′(ws) < 0 for all ws > 0, where ws is the agent’s
wealth in a generic state. To prevent corner solutions, we assume that limws→0+ u′(ws) = ∞.
Finally, we assume that u exhibits decreasing absolute risk aversion, i.e. that −u′′(ws)/u′(ws)
is strictly decreasing in ws for all ws > 0. Although this assumption is unnecessarily strong,
it simplifies the analysis considerably; see the discussion below.

Pricing. We assume that costs are determined by the constant product rule; this pricing
algorithm underpins the prediction market that we study experimentally (see Section 3).
Under this rule, prices are set by an automated market maker (AMM) that holds reserves
of yes and no shares, denoted (y, n). To illustrate the mechanics of the rule, suppose that a
trader wishes to spend x currency units to purchase yes shares (analogous comments apply
to purchases of no shares). The trader first transfers x to the AMM, which converts this into
x yes shares and x no shares; thus, the AMM’s reserves become (y + x, n + x). The AMM
then transfers the trader the number of shares q that satisfies

(y + x− q)(n+ x) = yn (2)

That is, it supplies the number of yes shares necessary to restore the product of its reserves
to its previous value yn. This rule implicitly defines the number of shares that a trader
receives q given the amount of currency they have spent x. Indeed, solving (2) for q yields

q = x(n+ x+ y)
n+ x

(3)

Equivalently, after letting C(q) = x denote the total cost of the shares, one sees that

C(q) =

√
(n− q + y)2 + 4nq + q − n− y

2 (4)

From this, it is straightforward to derive the marginal and average cost functions. The
following lemma characterises their key properties.9

9 All proofs are collected in Appendix A.
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Lemma 1. Under the constant product rule, the marginal cost of yes shares MC(q) satisfies
(i) MC(0) = n/(n + y), (ii) MC ′(q) > 0 for all q ≥ 0, and (iii) limq→∞ MC(q) = 1.
Similarly, the average cost of yes shares AC(q) satisfies (i) limq→0+ AC(q) = n/(n+ y), (ii)
AC ′(q) > 0 for all q > 0, and (iii) limq→∞AC(q) = 1.

As Lemma 1 emphasises, pricing under the constant product rule is non-linear. For a small
purchase of yes shares, both the marginal and average costs are close to n/(n+ y) and thus
determined by the ratio of yes and no shares held by the AMM (see Figure A1). As the size
of the purchase rises, yes shares become more scarce and so both average and marginal costs
rise. In the limit as q → ∞, average and marginal costs converge to 1; notice that such a
purchase is necessarily unattractive since the expected value of each share cannot exceed 1.

Optimal trading. We now characterise the optimal trading behaviour of the market par-
ticipants. As the next result shows, the ‘marginal price’ n/(n+y) plays a key role in pinning
down which types of trade participants will make. Specifically, participants with optimistic
beliefs (πi > n/(n + y)) will bet that the event will take place; whereas participants with
pessimistic beliefs (πi < n/(n+ y)) will bet that event will not take place.

Lemma 2. Define p = n/(n+ y). Then

• If πi > p, the trader will buy a positive quantity of yes shares.

• If πi = p, the trader will not hold any shares.

• If πi < p, the trader will buy a positive quantity of no shares.

At a technical level, Lemma 2 extends Arrow (1965)’s analysis of optimal betting to the case
of non-linear pricing. As pointed out by Arrow (1965), even risk averse traders will choose
to make a positive bet if this has positive expected value since they are locally risk neutral
around ws = 0. Since pricing is locally linear around q = 0, it is unsurprising that this
argument extends to our case and that the ‘marginal price’ at zero n/(n + y) plays a key
role in the argument.

Next, we examine how the behaviour of traders responds to an exogenous shock to the
market price. More precisely, we suppose that an external participant makes a purchase of
yes shares, thereby increasing n, decreasing y and pushing up the marginal price n/(n+ y).
The next result establishes how traders react qualitatively to the shock.

Lemma 3. Suppose that the marginal price increases from p to p+∆. Then

• Traders with πi ≥ p+∆ will decrease their holdings of yes shares.

• Traders with πi ∈ (p, p+∆) will switch from holding yes shares to holding no shares.
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• Traders with πi ≤ p will increase their holdings of no shares.

To sketch the proof, consider the case of πi ≥ p + ∆. Ignoring the cases of πi = 1 and
πi = p + ∆ (which require a separate argument), one first shows that optimal purchases
must satisfy a first order condition

πiu
′(w + q − C(q))

(1− πi)u′(w − C(q)) = C ′(q)
1− C ′(q) (5)

For any fixed q > 0, the shock increases marginal costs, thus shifting the right hand side of
(5) upwards. Meanwhile, under the assumption of decreasing absolute risk aversion, one can
show that the shock shifts the left hand side (i.e. the ratio of marginal utilities) downwards.
Each of these forces separately decreases the optimal purchase, which means that traders
will unambiguously choose to hold fewer yes shares.10

More substantively, Lemma 3 underscores the importance of reversion. It is easy to check
that traders who decrease their holdings of yes shares will put downward pressure on the
market price. Likewise, the market price will fall if a trader increases their holdings of no
shares. Thus, the model predicts that, following an exogenous increase in the price, the
behavioural adjustment of an arbitrarily chosen trader will lead the price to revert towards
its original value.

Although Lemma 3 captures the logic of reversion, it does not settle the quantitative question
of how much prices should revert following a manipulation attempt. In particular, it does
not tell us whether reversion should be complete. In addition, Lemma 3 does not describe
the speed of reversion and the shape of the price path following the manipulation. To shed
light on these more difficult questions, we now turn to simulations.

Simulations. To simulate the market under various conditions, we assume that u(ws) =
ln(ws); note that this functional form satisfies our maintained assumptions on u. One ad-
vantage of the logarithmic specification is that it allows the optimal trades to be solved
explicitly. For example, if πi > n/(n+ y), then the optimal spend on yes shares is

x∗ =
n
(√

y[(n+ 4(1− πi)πiw)y + 4(1− πi)πiw(n+ w)]− 2(1− πi)w − y
)

2(1− πi)(w + y) (6)

and the optimal purchase q may be computed using (3). Since the simulations involve solving
well over 107 optimisation problems (see below), avoiding numerical optimisation delivers an

10 As this discussion makes clear, the assumption of decreasing absolute risk aversion is unnecessarily
strong. Without it, however, one would need to assume an appropriate bound on the income effect.
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important reduction in speed.

In all simulations, the market is initialised and given t periods to reach a stable state. As in
our experiments, an external participant then purchases the number of yes shares required
to increase the price by 0.05; the market is then given t′ periods to adjust. At each time,
one trader is randomly selected to re-adjust her holdings. This introduces randomness into
the process; thus, we run each simulation 10,000 times and report the average of the realised
prices at every time.11

In the baseline case, we assume that m = 10, w = 100, and (n, y) = (1000, 1000). We also
assume that trader i has a belief πi = i/m for i ∈ {0, 1, ...,m} (i.e. that beliefs are uniform).
Finally, we set t = t′ = 100. The results are shown in Panel A of Figure 1. As can be seen,
the average price is stable at 0.5 before the shock; this is unsurprising given that the initial
reserves are balanced (n = y) and that beliefs are symmetric around 0.5. After the shock
increases the price to 0.55, the behavioural responses of the agents induce the price to move
back towards its original value of 0.5. However, reversion takes time; and even once prices
have stabilised, they have only reverted by around 40%.

It is natural to wonder how these results depend on the assumed market conditions; we
thus now report some variations. First, we vary the number of traders, considering m ∈
{10, 20, ..., 60}. Second, following Manski (2006), we allow traders to revise their beliefs
in light of the market price p. Specifically, we suppose that posterior beliefs are given by
π′
i = λp + (1 − λ)πi, where λ ∈ [0, 1] is the ‘learning rate’; we consider λ ∈ {0, 0.2, ..., 1}.

Finally, we vary the degree of prior agreement amongst the traders. Specifically, we assume
that trader i has a belief πi = α(i/m)+ (1−α)0.5 where α ∈ [0, 1]; note that that this nests
the baseline case of uniform beliefs (α = 1) along with the ‘opposite’ case of a common prior
belief of 0.5 (α = 0). We run separate sets of simulations for all α ∈ {0, 0.2, ..., 1}.

Figure 1 displays the most ‘extreme’ version of each variation; see also Table A1 for a more
detailed analysis that describes the degree of reversion under all the parameter combinations
that we consider. Several results are apparent. First, increasing the number of traders m

increases the speed of reversion in the short run as well as increasing the total magnitude
of reversion once prices have stabilised. This is intuitive: increasing the number of traders
increases the amount of wealth at their disposal, thereby making it easier for them to undo
the impact of the manipulative trade. Second, increasing the learning rate λ makes the
manipulation more ‘sticky’; indeed, in the extreme case of λ = 1, no reversion is observed
whatsoever. Intuitively, increasing λ means that the manipulative trade is ‘more persuasive’

11 All simulations can be reproduced using this code.
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(i.e. leads to a larger update to trader beliefs) and thus has a larger long-run effect on the
market price. Finally, increasing the amount of prior agreement amongst traders makes the
market harder to manipulate. In the extreme case where all traders have a common belief
of 0.5, moving the price away from 0.5 is especially difficult.

Figure 1: Price adjustment under different market conditions

(a) Baseline (b) Varying the number of traders

(c) Varying the learning rate (d) Varying prior agreement

Notes. This figure plots the average price (across 10,000 simulations) from time t = 50 to t = 150 under
different market conditions. Panel (a) displays the baseline simulations; Panel (b) compares m = 10 with
m = 60; Panel (c) compares λ = 0 and λ = 1; and Panel (d) compares uniform beliefs with a common belief.

Taken together, the model outlined in this section generates three key predictions concerning
the impact of price manipulation by an external market participant. First, the model predicts
that manipulation can systematically affect the market price — both in the short run (due
to the need for behavioural adjustment), but also in the long-run (e.g., due to ‘learning
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effects’). Second, however, the model also predicts that the effect of manipulation should be
somewhat ‘undone’ by future trades; this dynamic is captured qualitatively by Lemma 3 and
quantified by the simulation results. Third, the model suggests that the degree of reversion
should vary by market type. In particular, markets with more traders, a lower degree of
learning, and more prior agreement should be harder to manipulate. We will examine the
extent to which these predictions are borne out by the data in the subsequent sections.

3. Institutional background

Manifold markets. We conducted our experiment on the Manifold Markets platform,
which was founded in 2021. During our experiment, Manifold was the largest prediction
market website in the world as measured by the total number of markets hosted on the
platform.12 In addition, Manifold was one of the largest prediction market platforms as
measured by number of users, with around 10,000 ‘active’ users at the start of the experiment
in December 2023 (Manifold Markets, 2024).13 The large number of markets on Manifold
was crucial to the design of our large-scale field experiment; such an experiment would not
have been possible using more traditional platforms (e.g. the IEM) that have previously
been studied in the academic literature (Wolfers and Zitzewitz, 2004).

Trading. Figure A2 provides an example of a particular market on the platform. Traders
are shown the full history of market prices and given the opportunity to buy and sell yes and
no shares. If they choose to make a trade, they are shown how much this will cost and how
much it will move the (marginal) market price. Each market is equipped with a closing date,
which usually corresponds to the time at which the relevant question will be resolved. Below
the price chart, traders can read a description of the exact resolution criteria as well as any
comments that have been made by the traders over the course of the market’s lifespan.

Pricing. Trading within each market is conducted via an AMM that implements Maniswap,
a generalisation of the constant product rule that was studied in Section 2. Under Maniswap,
the AMM adjusts its reserves (y, n) in order to hold the expression ypn1−p constant. The
parameter p ∈ (0, 1) allows markets to be initialised at prices other than 50% without
‘wasting’ shares (see Manifold Markets, 2022 for the details). Notice that, in the common
case where a market is initialised at 50% (corresponding to p = 0.5), the Maniswap algorithm
exactly reduces to the constant product rule. Moreover, one can verify that an (appropriately

12 As of August 16 2024, there were 10 markets on PredictIt, 312 markets on Kalshi, 504 markets on
Polymarket, and well over 2000 markets on Manifold.

13 According to Similarweb estimates on website traffic, Manifold was the second most popular prediction
market website in April 2024. Specifically, the page view estimates are 1,145,000 for PredictIt, 673,000 for
Manifold, 531,000 for Polymarket, and 177,000 for Kalshi.
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modified) version of Lemma 1 holds under Maniswap, which allows one to establish analogous
versions of Lemmas 2 and 3 in this generalised environment.14

Users. According to an informal survey, which should be treated with some caution due to
the possibility of self-selection, Manifold users appear to skew heavily male (Manifold Survey,
2024). The majority of users reside in the United States; and these users are substantially
more likely to vote for the Democratic than the Republican party. Most users stated that they
were either aligned with or interested in the ‘rationalist’ movement; interest and alignment
with the ‘effective altruism’ movement are also common.

Innovations. In some respects, Manifold is an unusual platform. First, markets are user
created and resolved. This allows Manifold to host a large number of markets, which is
crucial for the feasibility of our large-scale experiment. Second, Manifold provides rich data
on each market’s characteristics, which facilitates our heterogeneity analysis. Third, a large
portion of trade is conducted by ‘bots’ (i.e. automated trading algorithms) that attempt to
exploit inefficiencies in the markets. Fourth, markets are run on a platform specific currency
(‘Mana’). While Mana (M) can be purchased using real currency (at a rate of $1 = 100M
during the experiment), it is not possible to convert Mana back into dollars.

Incentives. Despite this latter feature, there are several incentives to earn Mana through
trading. First, during the experiment, Mana could be converted into donations to a charity
of the user’s choice at the same $1 = 100M rate; in total, Manifold users had raised $316,000
for charity through this mechanism as of 16 May 2024. This incentive is plausibly especially
effective given that many Manifold users are interested in ‘effective altruism’ and thus may
view money and charitable donations as fungible. Second, Manifold ranks users based on
their monthly earnings: this may activate social-image incentives. Third, Manifold provides
users with personalised information about their trading performance and predictive accuracy
through Brier scores and calibration charts; this information may also tap into self-image
incentives (Bénabou and Tirole, 2006). Taken together, these incentives help explain why
Manifold has over 10,000 active users despite running on a platform specific currency. As
one especially successful trader on Manifold put it (EA Forum, 2022),

In the unusual world in which I find myself, for better or worse, doing well on a
prediction markets website is somewhat of a badge of honour . . . I wish I had
more noble motivations but, alas, I think that’s a good chunk of it . . . Another
important motivation for me using Manifold relates to charitable giving.

14 More precisely, all results continue to hold after one has changed the ‘marginal price’ from n/(n + y)
to np/(np− py + y).
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The importance of the financial incentives are also underscored by the ‘devaluation’ of Mana
that took place in April 2024. On 23 April, it was announced that Manifold would reduce the
rate at which Mana could be converted to charitable donations by a factor of 10. However,
users wishing to avoid the devaluation were given a one week ‘grace period’ in which they
could donate their earnings at the old (and substantially better) rate.15 Figure A3 shows
the impact of the announced devaluation on donations to GiveWell’s maximum impact fund,
which is the charity that received the largest value of donations from Manifold users. As
can be seen, the number of donations increased by over a factor of 100 in the week following
the announcement; whereas the value of donations increased by over a factor of 200. This
suggests that, although Manifold users may be motivated by social and self-image incentives,
they are also responsive to the financial incentives offered by the platform.

Figure 2: Calibration

Notes. This figure shows calibration on Manifold as of 20 November
2023, i.e. the relationship between the market price and the proba-
bility that a market resolves ‘yes’. Source: Manifold Markets (2023).

Predictive performance. Given these incentives, it is not surprising that the predictive
performance of Manifold is comparable to that of more traditional platforms. First, as shown

15 This grace period was ultimately extended to 15 May 2024.
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by Figure 2, the markets are generally well-calibrated: for example, markets on Manifold
with prices close to 40% have historically resolved ‘yes’ around 40% of the time. Second,
in a study of the 2022 US midterm elections, Manifold outperformed the more traditional
prediction markets in the sample (Sigma, 2024). Third, Manifold achieves Brier scores
that are comparable but slightly worse than Metaculus (EA Forum, 2024). Thus, based on
existing evidence, it appears that Manifold markets operate in broadly comparable ways to
more traditional prediction markets — a conclusion that is consistent with the findings of
previous work on the role of money in prediction markets (Servan-Schreiber et al., 2004).

4. Experimental design

Intervention. We now outline the structure of our experiment. As discussed earlier, the
basic idea was to randomly shock the prices of a large number of prediction markets. More
specifically, we either purchased yes shares until the price rose by 5 percentage points (the
‘yes’ group), purchased no shares until the price fell by 5 percentage points (the ‘no’ group),
or did nothing (the control group). Each given market was equally likely to be assigned to
any of these groups. We then observed the prices in every market in order to study whether
the effects of our shocks fade over time.

As explained in the pre-registration (Rasooly and Rozzi, 2023), we focus on the difference
in mean prices between the ‘Yes’ and ‘No’ groups since this is our best powered comparison.
Two points should be noted. First, since the treatment is randomly assigned, the difference
in average prices between these groups has a causal interpretation. Second, if prices in the
markets can be approximated by a random walk, then one would expect the variance of the
prices (and thus our standard errors) to increase over time. For this reason, we focus on
effects within 7 days of our intervention; although we also conduct analyses with longer time
horizons.

Exclusion criteria. We only bet on binary markets, i.e. markets that must resolve as ‘Yes’
or ‘No’ (or N/A). We excluded various types of market from our sample. First, we excluded
markets that do not resolve based on an external event by the end of 2025 (e.g. self-referential
markets). While self-referential markets (e.g. “will this market resolve at above 50%?”) along
with very long-run markets (e.g. resolving in 2030) may be relatively easy to manipulate,
they are also less representative of the markets that operate on other platforms. Second, since
very small markets are less likely to form the basis for influential probability estimates, we
excluded any market that had fewer than 10 traders at the time of our bet. Third, to obtain
a large sample with our experimental budget, we excluded any market which would have
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cost over 200M to move in either direction by 5 percentage points.16 Fourth, since markets
can be volatile at the start of their life-cycle (which increases standard errors), we excluded
markets that started within the last 7 days; to satisfy our data collection requirements, we
also excluded markets that ended within 30 days of our bet. Fifth, to reduce the scope for
arbitrage and informational effects (discussed in detail later), we excluded any market that
was closely related to another market that was already in our sample (e.g. “Will Trump
win?” vs “Will Trump lose?”).

Data. We collected hourly price data, starting 24 hours before the bet and continuing
for 30 days after the bet. Since we collected data on 817 markets, this means that we
have 817 × 24 × 31 ≈ 600, 000 price observations in total. We also collected rich data
on each market’s characteristics. First, we recorded the number of traders within each
market at the time of our bet; our model suggests that this variable should influence the
market’s manipulability. Second, we recorded whether each market’s question was also
present on another prediction platform (Metaculus) that is frequently discussed on Manifold
and sometimes used as the source for Manifold questions. If a question is on Metaculus,
then one would expect that ‘price learning’ should be lower and thus the market should be
harder to manipulate (see Section 2). Third, we collected three measures of the ‘activity of
a market’ — the total volume of trade, the volume of the trade within the last 24 hours, and
the number of comments left by traders. Since our model identifies a ‘time period’ with a
trade, it suggests that more active markets should effectively run on a faster ‘clock speed’ and
thus revert more quickly. For completeness, we also recorded some less interesting variables
that were also available on the platform; see Rasooly and Rozzi (2023) for a full description.

Power. Based on the calculations in Rasooly and Rozzi (2023), we needed n = 849 markets
in order to have 90% power to detect a difference of 3 percentage points between the average
prices in the ‘yes’ and ‘no’ groups after 1 week.17 Since the observed reversion was ultimately
substantially lower than we had anticipated, this sample size turned out to be unnecessarily
large for this purpose. However, the size of our sample remains useful for the heterogeneity
and longer-run analyses.

16 In practice, the effect of this restriction is to reduce the number of markets in our sample with initial
prices close to 0% to 100%. To see why this is true, note that, under the constant product rule, it is infinitely
expensive to increase the price from 95% to 100% (or to decrease the price from 5% to 0%).

17 When analysing the data, we realised that some of the 849 markets on which we had bet inadvertently
violated at least one of our exclusion criteria. After discarding these markets, we ended up with n = 817
markets in our sample. We should emphasise that our main results are entirely unaffected by the inclusion
(or lack of inclusion) of these markets.
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Timelines. We pre-registered our experiment (with an analysis plan) in December 2023.18

We made the bets over a 5 month period from December 2023 until April 2024. We concluded
our main data collection in May 2024 (30 days after the final bet).

5. Experimental results

5.1 Sample

We now describe the results of the experiment, beginning with an overview of the markets
in our sample. Table 1 reports some descriptive statistics. As can be seen, around 9% of the
market questions could also be found on the Metaculus platform. On average, users had left
3.5 comments at the time of our bet; however, this varies substantially across markets with
a minimum of 0 and maximum of 83. At the time of our bets, 27 traders had participated in
each market on average. If one considers the markets that had resolved as of 10 July 2024,
one sees that this number had risen to 47 traders on average by the end of the markets’
lifespan. Meanwhile, the total number of trades had increased on average to 136, with a
minimum of 0 and maximum of 1, 400.

Table 1: Descriptive statistics

Variable Mean Std. dev. Minimum Maximum

24 hour volume 24.7 119.9 0 1,701

Total volume 1,879 4,279 89 56,485

Metaculus 0.093 0.291 0 1

Comments 3.54 7.26 0 83

Traders 27.0 25.0 10 300

Final traders 47.1 44.9 10 321

Final trades 136.0 189.7 13 1,400

Notes. This table shows descriptive statistics for the markets in our sample.
The first 5 variables show statistics for the full sample (n = 817). The last two
variables show statistics for the 127 markets that had resolved as of 10 July 2024.

Table A2 provides an overview of the main topics addressed by the markets in our sample;
see also Fig A4 for a visual illustration. As can be seen, markets on politics (especially the

18 In general, we conformed closely to the analyses that we had pre-registered. However, we ultimately
deviated from the plan in a few (generally minor) ways. All deviations from the pre-registered plan can be
viewed in our pre-registration; see the document ‘Analysis plan (updated after the experiment)’.
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US 2024 Presidential election) and political conflict (especially the conflicts in Gaza and
Ukraine) are common. In addition, many markets concern artificial intelligence and the
speed of its development. Our sample also includes a variety of markets on sport, popular
culture (e.g. the outcomes of Oscar nominations), and various macroeconomic indicators
(e.g. inflation and interest rates).

5.2 Main results

7 day effects. We now examine the extent to which our manipulations had a persistent
effect over time. To obtain some initial graphical evidence on this question, Figure 3 plots
the average price in each of the three treatment groups, starting 24 hours before the trade
and continuing for 7 days after the trade. As can be seen, the average prices in each group are
stable in the 24 hours before the trade. By design, our intervention immediately increases the
average price in the ‘yes’ group by 5 percentage points and immediately decreases the average
price in the ‘no’ group 5 percentage points, thus creating a gap of 10 percentage points in
average prices between the groups.19 As time goes by, the gap between the ‘yes’ group and
‘no’ group becomes smaller, implying that some reversion is taking place. However, even
after 7 days have elapsed, a substantial gap of approximately 7.3 percentage points can be
observed between groups.

To examine this issue more formally, we estimate models of the form

pt,i = β0 + β11Y,i + β21C,i + β3p−1,i + ui (7)

where pt,i is the price in market i at time t, 1Y,i is a dummy variable that equals 1 if market
i is in ‘Yes’ group, 1C,i is a dummy variable that equals 1 if market i is in the control group,
and p−1,i is the price in the market in the hour before our bet. Thus, the ‘No’ group is the
omitted category. As explained in our pre-registration, we include the baseline control p−1,i

to increase statistical power. In subsequent robustness checks, we also control for the full
suite of baseline variables that are available in our dataset.

Figure 4 presents the estimated β̂1 coefficients obtained from estimating this regression for all
t ∈ {0, 1, ..., 167}. Note that this estimate is simply the difference in average prices between
the ‘yes’ and ‘no’ groups, correcting for any baseline imbalance in the p−1,i variable. Again,
one can see that the difference starts at around 10 percentage points (immediately after the
intervention) and declines over the course of the 1 week period. However, there is a clear

19 Since our data is hourly, there is some scope for reversion even in the hour in which the trade is made:
for this reason, the initially observed impacts of the yes and no shocks are slightly below 5 percentage points.
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Figure 3: Average prices over time

Notes. This figure shows average prices over time in the three treatment groups.
All series are rebased (by adding a constant) so that they start at 0.5.

difference between the groups of around 7.5 percentage points even after 1 week. As one
can see from the 95% confidence intervals (also depicted in the figure), this difference is
statistically distinguishable from zero (p < 0.01).

Figure A5 presents analogous results for the β̂2 coefficients, i.e. the comparison of the ‘no’
group with the control. As can be seen, the results are broadly similar: some reversion is
observed, but a sizeable (and statistically significant) difference between the groups can be
observed even after 7 days. Note that both of these findings — some reversion, along with
a persistent effect of our manipulations — are consistent with the model that is outlined in
Section 2.

Before proceeding, we use the control group to investigate whether ‘yes’ and ‘no’ bets have
symmetric effects (as one might expect). To do this, we notice that the hypothesis of
symmetry is equivalent to the hypothesis that β1 = 2β2, which can be tested as a linear
restriction on the statistical model. Using an F -test, we are unable to reject this restriction
at conventional significance levels (p = 0.124), which suggests that the observed effects are
reasonably symmetric.
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Figure 4: Comparing the ‘yes’ and ‘no’ groups (β̂1)

Notes. This figure plots the β̂1 coefficients obtained from estimating (7)
for all t ∈ {0, 1, ..., 167}. The 95% confidence intervals are computed using
robust standard errors.

30 day effects. Although our pre-registration focused on 7 day effects for reasons of statis-
tical power, one can also conduct similar analyses for the full 30 day horizon by estimating
the regression for all t ∈ {0, 1, ..., 719}. As shown by Figure A6, one observes some additional
reversion over the longer time horizon. However, even after 30 days, the estimated difference
between the ‘yes’ and ‘no’ groups has only fallen to 6.9%. Remarkably, even though stan-
dard errors have unsurprisingly grown due to the accumulation of shocks of time, the effect
remains highly significant (p < 0.01). It is also worth noticing that the speed of reversion
significantly slows over time: we observe 25% reversion in the first week, but just an addi-
tional 6% reversion over the next three weeks. This reduction in reversion speed is exactly
the pattern that is predicted in the model of Section 2 (see Figure 1).

60 day effects. Although we had originally planned to only collect data for 30 days after the
shocks (as outlined in our analysis plan), the strength of the results after 30 days suggested
that very long-run effects might be observable. As a result, we decided to additionally record
the price in every market 60 days after the bets. Note that, although our dataset contains
hourly data over the course of the first 30 days, we only recorded a single ‘price snapshot’
to measure 60 day effects.
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Table 2 displays the results. As one would expect, the standard error of β̂1 has risen further
over time (increasing from .004 after 1 week to .009 after 30 days and .014 after 60 days).
Despite this, however, significant effects (with p < 0.01) are clearly visible in the data even
60 days after the bets have been made. As can be seen from Column (1), the coefficient
β̂1 has fallen to .056; that is, prices have now reverted by approximately 44%. However,
this includes markets that had already resolved within 60 days; and one would not expect
to be able to manipulate the ‘60 day price’ of these markets (which should generally end
up close to 0% or 100% regardless of our intervention). Indeed, no significant effects are
observed on the ‘60 day price’ of already resolved markets; see Column (2). Once these
markets are excluded from the sample, the coefficient on β̂1 becomes .059, which suggests
that only 41% of reversion has taken place; see Column (3) for the details. Thus, the effects
of our manipulations can be clearly seen in the data even 60 days after they have taken
place, especially if one restricts attention to markets that had not resolved by that time.

Table 2: 60 day effects

(1) (2) (3)
Variable 60 day effects 60 day effects 60 day effects
Yes 0.0559*** 0.0855 0.0586***

[0.0135] [0.183] [0.0114]
Control 0.0122 -0.155 0.0258**

[0.0135] [0.138] [0.0103]
p−1,i 1.020*** 0.860*** 1.035***

[0.0258] [0.277] [0.0209]
Constant -0.0474*** 0.0835 -0.0596***

[0.0141] [0.135] [0.0110]
n 817 46 771
R2 0.617 0.156 0.723

Notes. This table shows the results of estimating regression (7) after
60 days. Column (1) reports results for the full sample; Column (2)
for markets that had already resolved; and Column (3) for markets
that had not already resolved. Robust standard errors in parentheses
(*** p < 0.01, ** p < 0.05, * p < 0.1).

Robustness. The previous sections demonstrate that, on average, market prices somewhat
revert following manipulative trades. However, even 60 days after the trades have taken
place, their impacts can still be clearly seen in the data. Since this result contrasts with the
general message from the previous literature, it is important to now assess its robustness.
To do this, we focus on the comparison of the ‘yes’ and ‘no’ groups within 30 days of our
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bets (in line with our pre-registered analysis plan).

First, we re-estimate our main specification while controlling for all baseline variables that
are available. The results are shown in Columns (2) and (4) of Table 3; as a comparison,
Columns (1) and (3) show the results from the baseline specification (which just controls
for p−1,i). As can be seen, adding the baseline controls makes very little difference to the
estimates: for instance, the estimated level of reversion changes from 25% to 24% after 1
week. In addition, the standard errors of β̂1 remain very stable once the controls are added,
suggesting that controlling for variables above and beyond the previous price p−1,i adds little
statistical power.

Table 3: Results with all baseline controls

(1) (2) (3) (4)
Variable 1 week effects 1 week effects 30 day effects 30 day effects
Yes 0.0748*** 0.0759*** 0.0686*** 0.0697***

[0.00446] [0.00431] [0.00908] [0.00912]
Control 0.0313*** 0.0305*** 0.0239*** 0.0235***

[0.00484] [0.00490] [0.00853] [0.00854]
p−1,i 1.000*** 1.003*** 1.028*** 1.030***

[0.00781] [0.00781] [0.0161] [0.0155]
Constant -0.0371*** -0.0297*** -0.0525*** -0.0644***

[0.00547] [0.0112] [0.00910] [0.0198]
n 817 817 817 817
R2 0.933 0.937 0.798 0.803

Notes. This table shows the estimated β̂1 coefficients obtained for t = 167 (Columns 1
and 2) and t = 719 (Columns 3 and 4). Columns (1) and (3) present the results under
the main specification; whereas Columns (2) and (4) control for all baseline variables.
Robust standard errors in parentheses (*** p < 0.01, ** p < 0.05, * p < 0.1).

Next, we examine whether our results might be biased by spillovers; i.e. by the possibility
that betting on one market influences the price of another market in our sample due to
either arbitrage or informational effects. As our analysis in Appendix C makes clear, it is
extremely unlikely that spillovers are responsible for our results. First, since we deliberately
avoided selecting ‘highly correlated’ markets, it is unclear a priori whether our interventions
generated any spillovers. Second, even if they did generate spillovers, these should cancel
out due to the randomness of the treatment assignment (see Appendix C for elaboration).
Third, and perhaps most importantly, if spillovers are driving the results, then one would
expect that dropping the more closely related markets would change the estimates. However,
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dropping such markets turns out not to have any appreciable effect on our estimates.

5.3 Heterogeneity

While the previous section reports the results for the full sample, the model we develop in
Section 2 suggests that the degree of reversion that is observed should systematically depend
on the market type. First, the model predicts that markets with less scope for learning should
be harder to manipulate. To operationalise this notion, we consider whether each market
question was ‘duplicated’ on Metaculus since this provides an external probability estimate
and thus should lessen the need for traders to base their personal probability estimates on
Manifold’s market price.20 Second, we consider each market’s level of ‘activity’ as measured
by its total trading volume, trading volume in the last 24 hours, and total number of user
comments. As discussed earlier, more active markets should revert more quickly since they
effectively run on a faster clock speed. Third, we consider each market’s number of traders;
as discussed in Section 2, markets with more traders should also be harder to manipulate.

As outlined in our pre-registration (Rasooly and Rozzi, 2023), we approach this question
through median splits. That is, for every continuous moderating variable vi, we construct
a variable xi that equals 1 if and only if a market’s vi value is at least the median of vi.21

When vi is binary, we simply set xi = vi. We then estimate the regression

p167,i = β0 + β11Y,i + β21C,i + β3p−1,i + β41Y,ixi + β51C,ixi + β6p−1,ixi + ui (8)

where 1Y,i and 1C,i are defined as before. Notice that the coefficient β4 is precisely the
difference in treatment effects between markets with xi = 0 (below median) and markets
with xi = 1 (above median). By obtaining the standard error of β̂4, one can then assess if
any differences that are observed are statistically significant.

Table 4 reports the 1 week treatment effects conditional on xi = 0 and xi = 1 (Columns 1
and 2); it also displays the differences between treatment effects β̂4 along with the p-values
corresponding to the test that these differences are zero. Three results are apparent. First,
markets that are also present on Metaculus appear to be harder to manipulate: after 1
week, they exhibit 47% reversion in contrast to the 23% reversion that is observed for the
non-Metaculus markets. While this result is in line with theoretical expectations, it should
be noted that, statistically, the difference between the two groups is only significant at the

20 Whether a market is duplicated on Metaculus is also a reasonable proxy for whether the market can
also be found on other prediction market platforms, which in turn should also blunt price learning effects.

21 In the case where the majority of entries are zero, we define the median as the smallest non-zero number
and split the sample at this point.
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10% level. Second, markets with higher levels of ‘activity’ (e.g., higher trading volume) are
also harder to manipulate. For example, markets with above median total volume exhibit
31% reversion over the course of a week; whereas markets with below median total volume
exhibit just 19% reversion. Again, these results are in line with theoretical expectations
but not always significant: one observes highly significant results when examining 24 hour
volume, but somewhat less significant results when examining total volume and the total
number of comments. Third, as one would expect, markets with a larger number of traders
are also harder to manipulate: reversion for markets with an above median number of traders
is 33%, whereas reversion for markets with a below median number of traders is 17%.22

Table 4: Heterogeneity in treatment effects

Variable Above median Below median Difference p-value
Metaculus 0.053*** 0.077*** 0.024* 0.096
24 hour volume 0.049*** 0.081*** 0.032** 0.041
Total volume 0.069*** 0.081*** 0.012 0.191
Comments 0.069*** 0.084*** 0.015* 0.071
Total traders 0.067*** 0.083*** 0.017* 0.056

Notes. This table shows how results depend on market type. The first two columns
reports 1 week effects for sub-samples of the data that are above and below median
values of the moderating variable. The next two columns report the difference between
these effects along with the p-value corresponding to the test that this difference is
zero. The asterisks correspond to the hypothesis that the relevant coefficient equals
zero (*** p < 0.01, ** p < 0.05, * p < 0.1).

While Table 4 reports how the estimates change following median splits, one can also split the
data in a more granular way to obtain a more detailed understanding of the heterogeneities
at play. Tables A3 and A4 conduct this exercise for the two moderating variables with well-
defined percentile values: the number of traders and the total volume of trade. Specifically,
we split the sample according to whether each of these moderating variables exceeds their 0th
percentile (the full sample), their 25th percentile, their 50th percentile (the median split),
and their 75th percentile values.23 In line with the predictions of our model (see Table A1),
this produces an apparently monotone pattern: as the number of traders or total volume
in the sample rises, the 1 week treatment effect falls. For example, while reversion is 25%
after a week for the full sample, reversion rises to 37% for the sample of markets that are

22 While all three results are consistent with our model, they come with the usual caveat concerning
causality: since market characteristics are not randomly assigned, one cannot be sure that any observed
heterogeneities reflect the causal impact of these characteristics.

23 Note that this exercise cannot be conducted for all variables since they need not have well-defined
percentiles: for example, the Metaculus variable is binary.
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in the top 25% in terms of number of traders; note that such markets have 56 traders on
average and 349 final trades. However, even once one restricts attention to subgroups with
a very high total volume or number of traders (which involves a substantial reduction of the
sample), one can still observe clearly significant treatment effects (p < 0.01).

In summary, the evidence presented here suggests that the manipulability of markets varies
across the sample in just the way that our model predicts. In all sub-samples that we
consider, we observe the same qualitative pattern: some reversion over time, but also some
scope for manipulation. However, the degree of reversion varies in the expected ways. In
particular, markets with an external source of probability estimates (namely, Metaculus),
markets with higher ‘activity’ (measured by market volume and the number of comments)
and markets with a larger number of traders appear to be harder to persistently manipulate.

6. Conclusion

In their review of the existing evidence, Wolfers and Zitzewitz (2004) state that manipulation
attempts do not have ‘much of a discernible effect on prices, except during a short transition
phase’. Our large-scale field experiment challenges this conclusion: we can detect the effects
of our manipulations even 60 days after they were made. However, as predicted by our
model, we also find substantial reversion (∼25% after a week) and important heterogeneities
in the expected directions.

Our findings somewhat confirm the concerns raised by prediction markets’ critics. However,
they do not imply that prediction markets are unhelpful or that they should be regulated
further: even if manipulable, their prices can still be somewhat informative (Hanson, 2004).
Moreover, although non-causal, our heterogeneity results may suggest that making prediction
markets more ‘active’ (by encouraging higher volume, more traders, etc.) can make them
more robust to manipulation attempts.

Our experiment also opens the door to a lot of future work. First, although we study
‘manipulation through trade’, it may also be interesting to study ‘manipulation through
buzz’: by leaving appropriate comments, it may also be possible to systematically shift the
market price.24 Second, it would be interesting to study optimal manipulation. While very
small trades cannot have a large impact on the market price, very large trades also appear
unlikely to have persistent effects since they are unlikely to appear ‘credible’ — for this
reason, one might expect a ‘U-shaped’ relationship between the long-run effect on prices and
size of the initial shock. Although our design does not address this question since it holds

24 We thank Koleman Strumpf for this suggestion.
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the size of the initial shock fixed, it would be straightforward (if logistically demanding) to
adapt our design so that it considers a range of initial shock sizes.

25



References

Allen, F. and Gale, D. (1992). Stock-price manipulation. The Review of Financial Studies,
5(3):503–529.

Arrow, K. J. (1965). The theory of risk aversion. In Aspects of the Theory of Risk Bearing,
chapter 2. Yrjo Jahnsonin Saatio, Helsinki.

Aumann, R. J. (1964). Markets with a continuum of traders. Econometrica, 32:39–50.

Bénabou, R. and Tirole, J. (2006). Incentives and prosocial behavior. American Economic
Review, 96(5):1652–1678.

Berg, J., Forsythe, R., Nelson, F., and Rietz, T. (2008). Results from a dozen years of
election futures markets research. Handbook of experimental economics results, 1:742–751.

Brown, A. and Yang, F. (2017). Anchoring and manipulation in speculative markets: A field
experiment. Available at SSRN 2898142.

Buckley, P. and O’Brien, F. (2017). The effect of malicious manipulations on prediction
market accuracy. Information Systems Frontiers, 19:611–623.

Camerer, C. F. (1998). Can asset markets be manipulated? A field experiment with racetrack
betting. Journal of Political Economy, 106(3):457–482.

Choo, L., Kaplan, T. R., and Zultan, R. (2022). Manipulation and (mis) trust in prediction
markets. Management Science, 68(9):6716–6732.

Deck, C., Lin, S., and Porter, D. (2013). Affecting policy by manipulating prediction markets:
Experimental evidence. Journal of Economic Behavior & Organization, 85:48–62.

EA Forum (2022). Manifold Markets interview with Joel Becker.

EA Forum (2024). Predictive Performance on Metaculus vs. Manifold Markets.

Fama, E. F. (1970). Efficient capital markets. Journal of Finance, 25(2):383–417.

Figlewski, S. (1979). Subjective information and market efficiency in a betting market.
Journal of Political Economy, 87(1):75–88.

Filippin, A. and Mantovani, M. (2023). Risk aversion and information aggregation in binary-
asset markets. Quantitative Economics, 14(2):753–798.

26

https://forum.effectivealtruism.org/posts/NY3TiJSpMZ2eDiX4L/manifold-markets-interview-with-joel-becker
https://forum.effectivealtruism.org/posts/PGqu4MD3AKHun7kaF/predictive-performance-on-metaculus-vs-manifold-markets


FT (2023). If prediction markets can tell the future, why is the US so afraid of them?
Financial Times Ltd.

Gjerstad, S. (2005). Risk aversion, beliefs, and prediction market equilibrium. Economic
Science Laboratory, University of Arizona.

Hansen, J., Schmidt, C., and Strobel, M. (2004). Manipulation in political stock markets–
preconditions and evidence. Applied Economics Letters, 11(7):459–463.

Hanson, R. (2004). Foul play in information markets. George Mason University.

Hanson, R. and Oprea, R. (2009). A manipulator can aid prediction market accuracy.
Economica, 76(302):304–314.

Hanson, R., Oprea, R., and Porter, D. (2006). Information aggregation and manipulation in
an experimental market. Journal of Economic Behavior & Organization, 60(4):449–459.

Jian, L. and Sami, R. (2012). Aggregation and manipulation in prediction markets: Effects
of trading mechanism and information distribution. Management Science, 58(1):123–140.

Kumar, P. and Seppi, D. J. (1992). Futures manipulation with “cash settlement”. The
Journal of Finance, 47(4):1485–1502.

Manifold Markets (2022). Maniswap.

Manifold Markets (2023). Track Record and Accuracy.

Manifold Markets (2024). Active Users.

Manifold Survey (2024). Survey Results Pt. 1.

Manski, C. F. (2006). Interpreting the predictions of prediction markets. Economics Letters,
91(3):425–429.

Mantovani, M. and Filippin, A. (2024). When do prediction markets return average beliefs?
Experimental evidence. University of Milan Bicocca Department of Economics, Management
and Statistics Working Paper.

NYT (2023). The Wager That Betting Can Change the World. The New York Times.

Oprea, R., Porter, D., Hibbert, C., Hanson, R., and Tila, D. (2008). Can manipulators
mislead prediction market observers? Working Paper 08-01, Chapman University, Economic
Science Institute.

27

https://www.ft.com/content/9108f393-6a45-41a3-bd76-20581b19288e
https://manifoldmarkets.notion.site/Maniswap-ce406e1e897d417cbd491071ea8a0c39
https://manifold.markets/calibration
https://manifold.markets/stats
https://plasmabloggin.substack.com/p/survey-results-pt-1-rationalists
https://www.nytimes.com/2023/10/08/technology/prediction-markets-manifold-manifest.html


Ottaviani, M. and Sørensen, P. N. (2007). Outcome manipulation in corporate prediction
markets. Journal of the European Economic Association, 5(2-3):554–563.

Pennock, D. M., Lawrence, S., Giles, C. L., Nielsen, F. A., et al. (2001). The real power of
artificial markets. Science, 291(5506):987–988.

Rasooly, I. and Rozzi, R. (2023). Experimental evidence on price manipulability (pre-
registration). AEA RCT Registry.

Rhode, P. W. and Strumpf, K. S. (2004). Historical presidential betting markets. Journal
of Economic Perspectives, 18(2):127–142.

Rhode, P. W. and Strumpf, K. S. (2006). Manipulating political stock markets: A field
experiment and a century of observational data. University of Arizona, mimeo.

Roll, R. (1984). Orange juice and weather. The American Economic Review, 74(5):861–880.

Rothschild, D. M. and Sethi, R. (2016). Trading strategies and market microstructure:
Evidence from a prediction market. The Journal of Prediction Markets, 10(1):1–29.

Servan-Schreiber, E., Wolfers, J., Pennock, D. M., and Galebach, B. (2004). Prediction
markets: Does money matter? Electronic markets, 14(3):243–251.

Sigma, F. (2024). Comparing election forecast accuracy.

Stiglitz, J. E. (2003). Terrorism: there’s no futures in it. Los Angeles Times.

Veiga, H. and Vorsatz, M. (2009). Price manipulation in an experimental asset market.
European Economic Review, 53(3):327–342.

Veiga, H. and Vorsatz, M. (2010). Information aggregation in experimental asset markets in
the presence of a manipulator. Experimental Economics, 13(4):379–398.

Vox (2024). Why prediction markets are bad at predicting who’ll be president. Vox.

Wolfers, J. and Leigh, A. (2002). Three tools for forecasting federal elections: Lessons from
2001. Australian Journal of Political Science, 37(2):223–240.

Wolfers, J. and Zitzewitz, E. (2004). Prediction markets. Journal of Economic Perspectives,
18(2):107–126.

Wolfers, J. and Zitzewitz, E. (2006). Interpreting prediction market prices as probabilities.
National Bureau of Economic Research.

28

https://manifold.markets/old-posts/comparing-election-forecast-accurac
https://www.vox.com/future-perfect/2020/2/14/21137882/prediction-markets-bloomberg-sanders-president


Appendix A. Proofs

Proof of Lemma 1. We begin by considering the marginal cost function. As shown in the
main text, the total cost function is given by

C(q) =

√
(n− q + y)2 + 4nq + q − n− y

2 (9)

This implies that marginal costs are given by

MC(q) = 1
2

 n+ q − y√
(n− q + y)2 + 4nq

+ 1

 (10)

The three properties follow from this formula:

(i) To show that MC(0) = n/(n + y), one simply substitutes q = 0 into (10) and simplifies
the resulting expression.

(ii) To show that MC ′(q) > 0 for all q ≥ 0, one computes the derivative

MC ′(q) = 2ny
((n− q + y)2 + 4nq)3/2

(11)

which is positive under the restrictions that n > 0, y > 0 and q ≥ 0.

(iii) To show that lim
q→∞

MC(q) = 1, one notes that

lim
q→∞

MC(q) = 1
2 lim

q→∞

n+ q − y√
(n− q + y)2 + 4nq

+ 1
2

= 1
2 lim

q→∞

√√√√ (n+ q − y)2
(n− q + y)2 + 4nq + 1

2

= 1
2

√
1
1 + 1

2
= 1

(12)

where the penultimate equality follows after expanding out the terms and dividing all terms
by the leading power q2. This establishes the final property of the marginal cost function.

We now show that these properties transfer to the average cost function:
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(i) To show that lim
q→0+

AC(q) = n/(n+ y), note that

lim
q→0+

AC(q) = lim
q→0+

C(q)
q

= lim
q→0+

C(0 + q)− C(0)
q

= MC(0) = n

n+ y
(13)

where the second equality uses the fact that C(0) = 0.

(ii) To show that AC ′(q) > 0 for all q > 0, we explicitly compute the derivative

∂AC

∂q
= 1

2q2

−√(n− q + y)2 + 4nq + q(n+ q − y)√
(n− q + y)2 + 4nq

+ n+ y

 (14)

Multiplying by 2q2
√
(n− q + y)2 + 4nq > 0, this has the same sign as

−(n− q + y)2 − 4nq + q(n+ q − y) + (n+ y)
√
(n− q + y)2 + 4nq (15)

We want to show that this expression is positive, or

(n+ y)
√
(n− q + y)2 + 4nq > −[q(n+ q − y)− (n− q + y)2 − 4nq] (16)

After squaring both sides and simplifying, the condition becomes nq2y > 0, which holds
since n, q, y > 0. Thus, AC ′(q) > 0 for all q > 0 as claimed.

(iii) To show that lim
q→∞

AC(q) = 1, notice that, as q → ∞, both C(q) → ∞ and q → ∞.
Since both are differentiable, we can evaluate the limit of AC(q) using L’Hôpital’s rule:

lim
q→∞

AC(q) = lim
q→∞

C(q)
q

= lim
q→∞

C ′(q)
1 = lim

q→∞
MC(q) = 1 (17)

This establishes the final property of the average cost function.

Proof of Lemma 2. We consider the cases separately:

Case 1: πi > p. First, suppose that the agent purchases a positive quantity qn > 0 of no
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shares. Then the expected value of their holdings W would be:

E[W ] = πi(w − qnAC(qn)) + (1− πi)(w − qnAC(qn) + qn)

< πi

(
w − qn

y

n+ y

)
+ (1− πi)

(
w − qn

y

n+ y
+ qn

)

= w + qn

(
n

n+ y
− πi

)
< w

(18)

Here, the first inequality holds since AC(qn) > y/(n + y) for any qn > 0 (by the no shares
analogue of Lemma 1); the next equality holds via algebraic manipulation; and the final
inequality holds since πi > p ≡ n/(n + y). Thus, holding no shares reduces the expected
value of the agent’s holdings. Since it also exposes the agent to risk, and the agent is risk
averse, it therefore cannot be optimal.

Next, suppose that the agent purchases a quantity qy ≥ 0 of yes shares (possibly, qy = 0).
Their expected utility is then

E[u(W )] = πiu(w + qy − C(qy)) + (1− πi)u(w − C(qy)) (19)

Using the chain rule, this has derivative

∂E[u(W )]
∂qy

= πiu
′(w + qy − C(qy))(1− C ′(qy))− (1− πi)u′(w − C(qy))C ′(qy) (20)

Recalling Lemma 1, we see that

∂E[u(W )]
∂qy

∣∣∣∣∣
qy=0

= πiu
′(w)

(
1− n

n+ y

)
− (1− πi)u′(w)

(
n

n+ y

)
(21)

= u′(w)
(
πi −

n

n+ y

)
(22)

Since u′(w) > 0 and πi > n/(n + y), this expression is positive and so qy = 0 cannot be
optimal: there must exist some ϵ > 0 such that qy = ϵ generates higher expected utility.

The previous arguments show that neither qn > 0 nor qy = 0 are optimal choices. However,
since the trader’s choice set is compact (recall the budget constraint) and their objective
function is continuous (recall that u is continuous and that the cost function is polynomial),
an optimal choice must exist. From this, it follows that some qy > 0 must be optimal.

Case 2 πi = p. Using the same reasoning as before, we see that, if the agent purchases no
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shares, then the expected value of their holdings will be

E[W ] < w + qn

(
n

n+ y
− πi

)
= w (23)

Thus, buying no shares reduces the expected value of their holdings. Since it exposes them
to risk, and they are risk averse, this cannot be optimal. Analogously, if they purchase yes
shares, the expected value of their holdings becomes

E[W ] < w + qy

(
πi −

n

n+ y

)
= w (24)

Thus, purchasing yes shares also reduces the expected value of their holdings and thus cannot
be optimal. However, an optimal choice does exist (see above). From this, it follows that
the optimal choice is qn = qy = 0.

Case 3 πi < p. This case can be handled in a similar way to the case of πi > p. That is,
one first shows that purchasing yes shares cannot be optimal since it reduces the expected
value of the agent’s holdings. By examining the derivative of expected utility when qn = 0,
one then shows that qn = 0 cannot be optimal either.

Proof of Lemma 3. First, we use Lemma 2 to pin down the types of share that each type
of trader must buy. Notice that:

• If πi ≥ p+∆, then πi ≥ p (since ∆ > 0). Thus, Lemma 2 implies that such types must
hold a weakly positive quantity of yes shares both before and after the price change.

• If πi ∈ (p, p + ∆), Lemma 2 implies that such types would buy yes shares before the
price change but buy no shares after the price change.

• If πi ≤ p, then πi ≤ p+∆. Thus, Lemma 2 implies that such types must hold a weakly
positive quantity of no shares both before and after the price change.

Next, we need to show that types with πi ≥ p+∆ will reduce their holdings of yes shares q.
If πi = p+∆, the statement is trivial: by Lemma 2, such types will choose q > 0 before the
price change but q = 0 after the price change. Next, suppose that πi = 1. For such types,
expected utility reduces to u(w + q − C(q)), which can be transformed to w + q − C(q).
Differentiating with respect to q, this becomes 1−C ′(q) > 0 since C ′(q) < 1 for any finite q

(by Lemma 1). Thus, such types will purchase the maximum feasible number of yes shares,
i.e. q̄ such that C(q̄) = w. Since C is strictly increasing in q and so invertible, q̄ = C−1(w).
Moreover, one can verify (see below) that increasing the price — which is equivalent to
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increasing n and decreasing y while holding the product ny constant — increases C(q) for
any q ≥ 0, thus decreasing C−1(q). Hence, increasing the price decreases q̄ = C−1(w); that
is, it induces the trader to reduce their holdings of yes shares (as claimed).

Having shown that the statement holds when πi = p+∆ or πi = 1, we now consider traders
whose beliefs satisfy πi ∈ (p + ∆, 1). As shown by Lemma 2, q = 0 cannot be optimal for
such types. Meanwhile, since limws→0+ u′(ws) = ∞, it cannot be optimal to choose q = q̄,
thereby obtaining zero wealth in one of the states. Hence, q ∈ (0, q̄). Since expected utility
is differentiable, this means that any optimal q must satisfy the first order condition

πiu
′(w + q − C(q))(1− C ′(q))− (1− πi)u′(w − C(q))C ′(q) = 0 (25)

Moreover,

∂2E[u(W )]
∂q2

= πi

[
u′′(w + q − C(q))(1− C ′(q))2 − C ′′(q)u′(w + q − C(q))

]
− (1− πi)

[
−C ′(q)2u′′(w − C(q)) + u′(w − C(q))C ′′(q)

] (26)

which is negative under the restrictions that u′ > 0, u′′ < 0, C ′ > 0 and C ′′ > 0. Thus, the
first order condition (25) has a unique solution.

Rewriting (25), we obtain

πiu
′(w + q − C(q))

(1− πi)u′(w − C(q)) = C ′(q)
1− C ′(q) (27)

Notice that, as the price rises — which is equivalent to increasing n and decreasing y while
holding the product k = ny constant — both C(q) and C ′(q) may change. To make this
dependence explicit, we can write the first order condition as f(q, y, n) = g(q, y, n), where f
and g are respectively defined as the left hand side and right hand side of (27). Since y is a
function of n (specifically, y = k/n), this can be simplified to f(q, n) = g(q, n). To see how
the optimal q varies with the price (i.e. n), one can apply the implicit function theorem

dq

dn
=

∂g(q,n)
∂n

− ∂f(q,n)
∂n

∂f(q,n)
∂q

− ∂g(q,n)
∂q

(28)

To compute the sign of (28), we now compute the signs of every term:

⋄ Observe that
∂g(q, n)

∂n
= ∂g(q, n)

∂C ′(q)
∂C ′(q)
∂n

= 1
(1− C ′(q))2

∂C ′(q)
∂n

(29)
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Moreover, after substituting y = k/n into the marginal cost function, one finds that

∂C ′(q)
∂n

= 2kn (k + n2)
(k2 + 2kn(n− q) + n2(n+ q)2)3/2

> 0 (30)

From (29) and (30), it follows that ∂g(q,n)
∂n

> 0.

⋄ Next, observe that
∂f(q, n)

∂n
= ∂f(q, n)

∂C(q)
∂C(q)
∂n

(31)

Since C(q) =
∫ q
0 C ′(q)dq and ∂C′(q)

∂n
> 0, ∂C(q)

∂n
> 0. Moreover,

∂f(q, n)
∂C(q) = πi

(1− πi)
∂

∂C(q)
u′(w + q − C(q))
u′(w − C(q))

= πi

(1− πi)
u′′(w − C(q))u′(w + q − C(q))− u′′(w + q − C(q))u′(w − C(q))

u′(w − C(q))2
(32)

which has the same sign as

u′′(w − C(q))u′(w + q − C(q))− u′′(w + q − C(q))u′(w − C(q)) (33)

We claim that this expression is negative, or

−u′′(w − C(q))
u′(w − C(q)) > −u′′(w + q − C(q))

u′(w + q − C(q)) (34)

which holds under the assumption of decreasing absolute risk aversion. Hence, ∂f(q,n)
∂C(q) < 0.

From this and (31), it follows that ∂f(q,n)
∂n

< 0.

⋄ Next, observe that
∂f(q, n)

∂q
= πi

1− πi

∂

∂q

u′(w + q − C(q))
u′(w − C(q)) (35)

Since πi/(1− πi) > 0, this has the same sign as

u′′(w + q − C(q))u′(w − C(q))(1− C ′(q)) + u′′(w − C(q))u′(w + q − C(q))C ′(q)
u′(w − C(q))2 (36)

which is negative given that u′ > 0, u′′ < 0 and C ′(q) ∈ (0, 1). Hence, ∂f(q,n)
∂q

< 0.

⋄ Finally, observe that

∂g(q, n)
∂q

= ∂g(q, n)
∂C(q) C ′(q) = C ′(q)

(1− C ′(q))2 > 0 (37)
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In summary, ∂g(q,n)
∂n

> 0, ∂f(q,n)
∂n

< 0, ∂f(q,n)
∂q

< 0 and ∂g(q,n)
∂q

> 0. It follows that

dq

dn
=

∂g(q,n)
∂n

− ∂f(q,n)
∂n

∂f(q,n)
∂q

− ∂g(q,n)
∂q

< 0 (38)

Thus, any trader with πi ≥ p +∆ will decrease their holdings of yes shares. By an exactly
symmetric argument (which we omit for brevity), one can also show that any trader with
πi ≤ p will increase their holdings of no shares.
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Appendix B. Tables and figures

Figure A1: Costs under the constant product rule (n = y = 10)

0 10 20 30 40 50 60 70 80 90 100
0

n
n+y

1

MC(q)

AC(q)

q

Function values

Notes. This figure displays marginal and average costs under the constant product
rule with initial reserves (y, n) = (10, 10).
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Table A1: Reversion coefficients under different market conditions

λ 0 0.2 0.4 0.6 0.8 1

SR reversion 14.5% 13.3% 11.2% 8.3% 4.5% 0.0%

LR reversion 39.8% 37.3% 33.0% 26.2% 15.9% 0.0%

α 0 0.2 0.4 0.6 0.8 1

SR reversion 22.7% 22.4% 21.5% 19.9% 17.6% 14.5%

LR reversion 52.3% 51.8% 50.6% 48.4% 44.9% 39.8%

m 10 20 30 40 50 60

SR reversion 14.5% 16.0% 16.7% 16.9% 18.5% 18.6%

LR reversion 39.8% 57.1% 67.1% 74.4% 79.3% 82.0%

Notes. This table shows the short-run (SR) and long-run (LR) reversion coefficients under
different market conditions. SR reversion is defined using (p̄3− p̄0)/0.05 and LR reversion
using (p̄100− p̄0)/0.05, where p̄t is the average price across the 10,000 simulations at time
t and t = 0 is the time of the manipulation. The coefficients λ, α and m respectively
denote the learning rate, the belief parameter and the number of traders.

Figure A2: An example of a market on Manifold.

Notes. This figure shows an example of a market on the Manifold platform.
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Figure A3: The impact of the Mana devaluation on GiveWell donations.

Notes. This figure shows the daily number and value (in USD) of donations to
GiveWell’s Maximum Impact Fund by Manifold users from 14 April 2024 to 1 May
2024. Dates after and including 23 April (the shaded area) represent dates after the
announcement of the devaluation.
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Table A2: Topics

Topic Frequency Percentage
Artificial intelligence 103 12.61
US politics 50 6.12
Macroeconomics 31 3.79
Israel and the Palestinian territories 30 3.67
YouTube and its streamers 27 3.3
Video games 24 2.94
Manifold Markets 22 2.69
The Russo-Ukrainian War 21 2.57
Football 19 2.33
American football 17 2.08
Legal rulings 16 1.96
Television 14 1.71
Basketball 12 1.47
X (formerly Twitter) 11 1.35
Taylor Swift 10 1.22
UK politics 10 1.22
Cryptocurrency 9 1.1
Elon Musk 9 1.1
The 2024 Paris Olympics 9 1.1
The Oscars 9 1.1
Russian politics 9 1.1
Apple Inc. 8 0.98
Science 8 0.98
Nuclear energy and weapons 7 0.86
Satellites and space 7 0.86
Amazon.com, Inc. 6 0.73
Canadian politics 6 0.73
Effective altruism 6 0.73
Tesla, Inc. 6 0.73
Other topics 203 36.87
Total 719 100

Notes. This table shows the topics of the questions in the sample; the topic of each
question is manually assigned and can be viewed using the replication package. Topics
with 5 or fewer questions are omitted from the table.
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Figure A4: Markets in the sample

Notes. This figure shows a ‘word cloud’ formed from the market questions
in our sample.

Figure A5: Comparing the ‘no’ and ‘control’ groups (β̂2)

Notes. This figure plots the β̂2 coefficients obtained from estimating (7) for
t ∈ {0, 1, ..., 167} along with (robust) 95% confidence intervals.
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Figure A6: Comparing the ‘yes’ and ‘no’ groups (β̂1) after 30 days

Notes. This figure plots the β̂1 coefficients obtained from estimating (7) for all t ∈
{0, 1, ..., 719} along with (robust) 95% confidence intervals.
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Table A3: Heterogeneity by number of traders

(1) (2) (3) (4)

Variable Full sample 25% split 50% split 75% split

Yes 0.0748*** 0.0693*** 0.0666*** 0.0625***

[0.00446] [0.00565] [0.00602] [0.00999]

Control 0.0313*** 0.0268*** 0.0264*** 0.0259**

[0.00484] [0.00594] [0.00673] [0.0108]

p−1,i 1.000*** 0.997*** 1.009*** 1.003***

[0.00781] [0.0103] [0.0157] [0.0283]

Constant -0.0371*** -0.0325*** -0.0406*** -0.0378**

[0.00547] [0.00719] [0.00824] [0.0149]

n 817 640 419 207

R2 0.933 0.915 0.908 0.838

Notes. This table shows the results of estimating regression 7 on: the full sample (Column
1), the sample with an above 25th percentile number of traders (Column 2), the sample
with an above median number of traders (Column 3), and the sample with an above 75th
percentile number of traders (Column 4). Robust standard errors in parentheses (***
p < 0.01, ** p < 0.05, * p < 0.1).
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Table A4: Heterogeneity by total volume

(1) (2) (3) (4)

Variable Full sample 25% split 50% split 75% split

Yes 0.0748*** 0.0706*** 0.0692*** 0.0539***

[0.00446] [0.00485] [0.00623] [0.0106]

Control 0.0313*** 0.0284*** 0.0374*** 0.0195*

[0.00484] [0.00575] [0.00661] [0.0112]

p−1,i 1.000*** 0.999*** 1.012*** 0.998***

[0.00781] [0.0103] [0.0124] [0.0245]

Constant -0.0371*** -0.0359*** -0.0479*** -0.0315**

[0.00547] [0.00604] [0.00699] [0.0130]

n 817 613 410 205

R2 0.933 0.926 0.918 0.858

Notes. This table shows the results of estimating regression 7 on: the full sample (Column
1), the sample with an above 25th percentile total volume (Column 2), the sample with an
above median total volume (Column 3), and the sample with an above 75th percentile total
volume (Column 4). Robust standard errors in parentheses (*** p < 0.01, ** p < 0.05, *
p < 0.1).
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Appendix C. Robustness

In this section, we consider whether our results might be affected spillovers between the
markets. In theory, there are two ways in which this might occur:

• Informational spillovers arise when betting on one market provides information about
another market, thereby influencing its price.

• Arbitrage spillovers arise when betting on one market creates an arbitrage opportunity,
thereby inducing trade on a closely related market.

Since we avoided betting on closely related markets, it is not clear that either type of spillover
would have arisen during our experiment. For completeness, however, we now consider the
possibility (and relevance) of such spillovers in some detail.

Theoretical observations. In the main analysis, we estimate the model

pt,i = β0 + β11Y,i + β21C,i + β3p−1,i + ui (39)

where 1Y,i and 1C,i are the treatment dummies, p−1,i is the price in market i just before
the bet, and ui captures the effect on subsequent trades on the price at time t. To make
the analysis more tractable, we remove the control group from consideration and study the
simpler model

pt,i = β0 + β11Y,i + β2p−1,i + ui (40)

This model does not allow for the possibility of spillovers. To allow for this possibility, we
suppose that a subset of the markets S generates spillovers in another subset of the markets
S ′. For simplicity, we assume that S and S ′ are disjoint and let σi,j denote the effect of
market j on market i. (Thus, σi,j = 0 if i /∈ S ′ or j /∈ S.) We then generalise (40) to

pt,i = β0 + β11Y,i + β2p−1,i +
∑
j∈S

σi,j1Y,j −
∑
j∈S

σi,j(1− 1Y,j) + ui (41)

To understand (41), suppose that market i and market j are positively correlated. In that
case, betting yes on j should increase the price of j and thereby increase the price of i: this
explains the σi,j1Y,j term. For the same reason, however, betting no on j should decrease
the price of j and thereby decrease the price of i: this explains the σi,j(1−1Y,j) term. Given
the random assignment of markets into either the yes group Y (which increases pt,i) or the
no group N (which decreases pt,i), there is thus no reason to expect betting on j to influence
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the price of i on average. More formally, one sees that

E[pt,i] = β0 + β11Y,i + β2p−1,i +
∑
j∈S

σi,jP(j ∈ Y )−
∑
j∈S

σi,j(1− P(j ∈ Y )) (42)

and so the last two ‘spillover’ terms cancel (given that P(j ∈ Y ) = 0.5, which in turn holds
since the control group is omitted from the analysis). In addition, it is worth noting that,
while spillovers could be positive (in the case of positively correlated markets), they could
just as well be negative — which provides an additional reason for scepticism about whether
they plausibly bias the results.

Empirical results. The previous observations suggest that, even if spillovers did arise (which
seems unlikely), they should not systematically bias the results. To investigate this issue
empirically, we now consider the impact of dropping the ‘most related’ markets from our
sample. If spillovers are responsible for our results, then dropping these markets should
substantially change our estimates. Conversely, if spillovers are absent (as we suspect) or
irrelevant (as our theoretical analysis suggests), dropping these markets should not have a
large impact on our estimates.

To do this, we considered sets of markets on which we had bet within a one-week period.
Notice that, if one considers 7 day effects as we do here, it is not possible for spillovers to
bias the results for markets whose betting times differ by more than 7 days. We gave every
such set of questions to GPT-4.0 along with the prompt:

Some of these questions may be on the same topic. These questions have the
property that, if you know the answer to one of them, you will learn a lot about
the answer to another of them. If you find any such questions, can you flag them?

In a handful of cases, GPT-4.0 flagged questions that were extremely unlikely to be connected
via spillovers (e.g. ‘Will Jimmy Carter Die on a weekday in 2024?’ vs ‘Will Manifold require
phone verification for all new users at any time in 2024?’). In such cases, we ignored GPT’s
suggestion. In all other cases, however, we dropped all but one of the flagged set of markets
from the dataset, thereby generating a ‘reduced dataset’ that can be viewed in the replication
package.

Table A5 displays the results of re-estimating our main analysis on the reduced dataset;
to further reduce to the possibility of spillovers, we exclude the control group. As can be
seen, dropping the (possibly) related markets reduces the sample from 556 to 482 markets.
While this is not an especially large reduction, it should be remembered that we deliberately
selected our markets to be unrelated. As can also be seen from comparing the two columns,
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the results are essentially identical after dropping the ‘most related’ markets. This provides
further evidence that spillovers are extremely unlikely to be generating our results.

Table A5: 7 day effects on the reduced sample

Variable Main results Reduced sample
Yes 0.075*** 0.075***

[0.004] [0.005]
p−1,i 1.003*** 1.003***

[0.008] [0.009]
Constant -0.038*** -0.037***

[0.006] [0.006]
R2 0.937 0.942
n 556 482

Notes. This table shows the results of estimating regression (40) on the
full sample (Column 1) and the reduced sample (Column 2), excluding the
control group from all analyses. Robust standard errors in parentheses
(*** p < 0.01, ** p < 0.05, * p < 0.1).
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