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In this paper, we design and implement an experiment aimed at test-
ing the level-kmodel of auctions.We begin by identifying (simple) en-
vironments that optimally disentangle the predictions of the level-k
model from the natural benchmark of Bayes-Nash equilibrium. We
then implement these environments within a virtual laboratory in
order to see which theory can best explain observed bidding behavior.
Overall, our findings suggest that, despite its notable success in predict-
ing behavior in other strategic settings, the level-k model (and its close
cousin, cognitive hierarchy) cannot explain behavior in auctions.
I. Introduction
Although the study of auctions remains dominated by equilibrium-based
approaches, in recent years more “behavioral” alternatives have emerged.
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Most prominent among these is Crawford and Iriberri (2007)’s level-k
model, which posits that individuals iteratively best respond to a naive
“first thought” about how one might bid in an auction. If accurate, the
level-k model would substantially revise our understanding of how auc-
tions ought to be designed (Crawford et al. 2009; De Clippel, Saran, and
Serrano 2019) and would similarly revise how we think about individual
reasoning in incomplete information settings. Understanding whether
the level-k model is accurate is thus a critical issue.
Surprisingly, however, the existing literature provides little insight into

the predictive performance of level k and whether it can outperform the
natural benchmark of Bayes-Nash equilibrium (BNE). There is some ev-
idence that the level-k model might be able to explain the “winner’s
curse” in common value auctions (Crawford and Iriberri 2007; Costa-
Gomes and Shimoji 2015) but also evidence that it might do so for the
wrong reasons (Ivanov, Levin, and Niederle 2010). In addition, there
does not appear to be any serious comparison of level k and equilibrium
in the rather simpler independent private setting (IPV) that forms the
starting point for most auction research. For example, while Crawford
and Iriberri (2007) do compare level k and equilibrium using an IPV data
set, the auction structure that generated this data set leads level k and
equilibrium tomake nearly identical predictions—making a formal com-
parison of the models almost impossible.1

It is also difficult to learn very much about the relative performance of
level k and equilibrium using existing experimental data sets since these
have often been generated by first-price auctions with uniformly distrib-
uted valuations (Kagel and Levin 1995). Unfortunately, the predictions
of level k and equilibrium entirely coincide in such settings (for any
k ≥ 1). Moreover, while it is easy to disentangle level k and equilibrium
using “exotic” value distributions, it is doubtful that such distributions
would be understood by all subjects in any actual experiment. The chal-
lenge is therefore to find an experimental design that is both sufficiently
simple for subjects to understand and yet dramatically disentangles the
models.
1 See also Kirchkamp and Reiß (2011) for a brief experimental comparison of level k
and equilibrium, albeit in a paper not devoted to level-k reasoning. Since the goal of their
paper was not to assess the performance of level k, it is perhaps not surprising that their
experiments do not cleanly disentangle level k and equilibrium; e.g., in their first experi-
ment, the predictions of the models coincide entirely. See also Gillen (2009), An (2017),
Galavotti, Moretti, and Valbonesi (2018), and Hortaçsu et al. (2019) for work on the level-k
model in the context of observational data. These papers do not attempt to test the accu-
racy of the level-kmodel or compare it with equilibrium, and indeed doing so using obser-
vational data (when individual valuations are unknown) would obviously be much more
challenging than doing so with an experimental approach.



402 journal of political economy microeconomics
We begin by proposing an environment that does exactly this: a dis-
crete all-pay auction with uniformly distributed values.2 We first analyze
the equilibriumpredictions in this environment, proving that it possesses
exactly one symmetric equilibrium. We thus extend a well-known result
from continuous auction theory to the discrete auction model, and do
so using completely novel (and elementary) arguments.3 In the course
of our proof, we construct an algorithm that is guaranteed to identify this
equilibrium,4 finding that it closely approximates the continuous equilib-
rium of traditional auction theory given the parameters chosen in our ex-
periment. In this equilibrium, bids increase (quadratically) in valuations,
rising to around half of valuations at the maximum possible valuation
that players can draw.
We then conduct a similar analysis of the level-k model but uncover a

surprising contrast. Solving the level-1 player’s optimization problem re-
veals a corner solution: such types bid zero for all valuations. As a result,
level-2 and level-3 types also bid close to zero; the former “overcutting”
the level 1s by (almost always) bidding 1 and the latter overcutting the
level 2s by (almost always) bidding 2. Clearly, this is very different from
equilibrium, and so we have found an environment that clearly separates
the models. In addition, this environment leads the models to possess
very different comparative statics. For example, in the level-kmodel, mak-
ing the bid discretizationmore coarse substantially inflates the predicted
bids, whereas in the equilibrium model, it has very little effect.
Next, we conduct a similar exercise in the first-price auction, again as-

suming uniformly distributed values to make the environment experi-
mentally implementable (and to force the two level-0 specifications pro-
posed by Crawford and Iriberri [2007] to coincide; we elaborate on this
point later on). To break the equivalence of the level-k and equilibrium
models, we introduce the possibility that subject bids are “canceled”
(in which case they lose the auction automatically). We then solve for
the cancellation probability that maximizes the “distance” between the
two theories. This turns out to separate the models in a similar way:
level-k bids are once again close to zero, whereas equilibrium bids are
roughly a quarter of valuations. Thus, we once againmanage todisentangle
2 We work with discrete models throughout both for the sake of realism (any actual auc-
tion must be discrete) but also because the level-k model would be ill defined in a contin-
uous auction setting (we elaborate more on these points later on).

3 Our argument holds for arbitrary value distributions and can be straightforwardly
modified to allow for factors such as risk aversion. It also extends immediately to the first-
price auction; indeed, we suspect that it could be extended to fairly arbitrary auction struc-
tures (although we have not formally verified this).

4 To aid future experimenters, we have implemented the algorithm and made it avail-
able online. See https://auctionsolver.herokuapp.com/.

https://auctionsolver.herokuapp.com/
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the models in an environment simple enough to be implemented in an
experiment.5

We then conduct an experiment designed to put these insights into
practice. The basic idea of the experiment is straightforward. We create
the aforementioned environments in a virtual laboratory, allowing us
to see which of the models under consideration better predict the ob-
served bids. However, the experiment also possesses various other fea-
tures aimed at testing the predictive success of the level-k model. For
example, we elicit individuals’ levels using a variant on Arad and Rubin-
stein (2012)’s 11–20 game, study whether behavior varies with the bid dis-
cretization in the manner predicted by level-k theory, and finally ask indi-
viduals to explain why they bid in the way that they did to see whether the
level-kmodel accurately characterizes their conscious reasoning processes.
The experiment yields four central findings. First, if individual levels

are restricted to the 1–3 range (to capture an intuitive limit on the num-
ber of thinking steps that individuals can be expected to perform), then
the level-k predictions are far lower than the observed bids. In addition,
the level-k predictions are substantially less accurate than those of equi-
librium. These conclusions hold across all the auction structures and
treatments that we consider and under a variety of approaches to model
testing and comparison. Moreover, this conclusion continues to hold if
one allows individual levels to vary across auction rounds but retains the
requirement that individual levels are “plausible” (i.e., in the 1–3 range).
Second, if one fits the model without any such plausibility restrictions,

one finds levels typically estimated in the 30–35 range. We view this al-
most as a reductio ad absurdumof themodel since it conflicts with almost
all prior experimental work on this issue (Crawford, Costa-Gomes, and
Iriberri 2013), clashes with basic intuition about the number of thinking
steps that individuals can plausibly be expected to conduct, and sits un-
easily beside findings from linguistics that individuals struggle to even
comprehend higher order statements whose order exceeds 3 (Arad and
Rubinstein 2012). Moreover, methods for penalizing model flexibility
(e.g., the Bayesian information criterion) generally do not support the in-
clusion of these very high levels.
Third, individuals’ levels as estimated from the auctions bear almost

no resemblance to their levels as inferred from a game known to trigger
level-k reasoning (the 11–20 game). This is hard to square within the
5 Onemight wonder why level k and equilibrium can produce such different predictions
in these environments when they produce identical predictions in the case of first-price
auctions with uniform values. The answer is that, in the first-price auction with uniform
values, the assumed level-0 behavior (uniform bidding) matches up with the equilibrium
bid distribution (which is also uniform, albeit with a stretched support). In contrast, our
two auction structures can lead to highly nonuniform equilibrium bid distributions—
whereas the assumed level-0 behavior remains uniform.
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context of the level-kmodel: for if levels reflect either cognitive sophisti-
cation or beliefs about the cognitive sophistication of one’s opponents,
then one would expect to find a positive correlation between estimated
levels across games. Conversely, the absence of positive correlation across
any two games can be taken as prima facie evidence that level-k reasoning
is not operative in at least one of the games under consideration.
Finally, we find that subjects are unlikely to cite iterated reasoning

when asked to explain why they bid in the way that they did. In other words,
subjects are unlikely to offer conjectures about the bidding strategies of
their opponents—and even less likely to ground these conjectures in
what they take to be their opponents’ conjectures about their own bid-
ding strategy. Admittedly, we do see evidence of iterated reasoning in
the explanations given by at least one subject—and this subject was (per-
haps not coincidentally) likely to bid in line with the predictions of the
level-k model. However, such reports are very rare, suggesting that the
level-kmodel captures at best a small fraction of observed bidding behavior.
We then conduct a series of extensions and robustness checks. For ex-

ample, we consider the impact of incorporating risk aversion into the
models, allowing subjects to best respond to a distribution over levels
(as in Camerer, Ho, and Chong [2004]), changing the level-0 specifica-
tion, as well as conducting various tweaks to our empirical analyses (e.g.,
including subjects who submit dominated bids). We do not find that any
of these exercises alter our substantive conclusions.
The remainder of this article is structured as follows. Section II outlines

an equilibrium and level-k analysis of the discrete all-pay and first-price
auctions. Section III presents our experimental design. Section IV con-
tains our empirical results and section V our robustness checks. Finally,
section VI concludes with a discussion of why the level-k model does so
poorly in the auction setting despite its well-documented successes in
other domains of strategic behavior.
II. Separating Level k from Equilibrium

A. The All-Pay Auction
To begin, let us describe our first environment that sharply disentangles
the level-k and equilibrium models: a (discrete) all-pay auction with uni-
formly and independently distributed values. There are n ≥ 2 bidders,
each assumed to be risk neutral (we relax this assumption in sec. V). As
in our experiment, each player’s valuation vi is drawn from the set
X 5 f0, 1, ::: , xg for some x ∈ N1, and the bids that they may submit
are restricted to the very same set X. Let b :X→X denote a generic pure
strategy (i.e., “bidding function”). We study the case of discrete values
and bids since (i) this is inevitably the setup in the experiment that
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follows, as indeed it must be in any auction experiment; (ii) if we had in-
stead assumed that the bids were continuous, as is more standard in the
literature, then the predictions of the level-kmodel would be ill defined.6

Since this is an all-pay auction, individuals need to pay their bid nomat-
ter whether they win the object. However, they win the object if and only if
their bid is strictly higher than all bids submitted by their opponents.
Note that we assume that individuals cannot win the object in the event
of a tie. While this is a slightly unusual assumption, it matches the tie-
breaking rule that we adopt in the experiment. This tie-breaking rule, in
turn, was chosen because it tremendously simplifies the equilibrium (and
to a lesser extent the level-k) analysis.7

To begin with, we consider what Bayes-Nash equilibrium (henceforth,
“equilibrium”) predicts that individuals will do in this situation. In par-
ticular, we will focus on symmetric equilibria. We do this for three rea-
sons. First of all, it is unclear how individuals could be expected to coor-
dinate on asymmetric equilibria without any communication in a one-shot
game. Second, symmetric equilibria are analytically more tractable. Third,
based on computational experiments reported in Rasooly and Gavidia-
Calderon (2020), it does not seem as though discrete auction games such
as those described above possess asymmetric equilibria that are substan-
tially different from their symmetric equilibrium. Therefore, one might
hope that the restriction to symmetric equilibria is “almost” without loss
of generality.
Unfortunately, since our auction is discrete we cannot directly apply

results from “standard” auction theory. We can, however, establish the
following very useful result (which holds entirely independently of the
distribution from which each player’s valuation is drawn).
Proposition 1. The discrete all-pay auction has exactly one symmet-

ric equilibrium.
Proposition 1 contains two claims: that a symmetric equilibrium exists

and that it is unique. Establishing the existence part is straightforward:
since the game is finite, one can essentially just apply Harsanyi (1967).
However, establishing uniqueness is considerably more involved; see ap-
pendix A for the details. Importantly, the uniqueness proof is based on
an algorithm that explicitly constructs the (candidate) equilibrium (see
app. B for examples of the algorithm in action). Thus, our result does
6 In particular, the level-2 player would not possess a best response: for any number e > 0
that they might bid, there exists a feasible bid e0 < e that would yield them a higher ex-
pected payoff.

7 While the tie-breaking rule assumed here mirrors that used in our experiment, one
can obtain quantitatively similar equilibrium and level-k predictions using alternative tie-
breaking rules (assuming that the number of bids and valuations is sufficiently large to
make ties somewhat improbable).
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not merely tell us that there is exactly one symmetric equilibrium, but
also shows us exactly how to compute it.8

Having developed this algorithm, we now use it to compute the sym-
metric equilibrium in the case of the distribution (uniform) used in
our experiment. Figure 1 displays the result for the case of x 5 15 and
n 5 3: a dot represents a bid that is submitted with positive probability.
As can be seen, the equilibrium is in (properly) mixed strategies, but it
is closely approximated, quantitatively speaking, by the continuous equi-
librium of “textbook” theory:9

bðvÞ 5 n 2 1

n

� �
vn

xn21 : (1)

As in the continuous model, equilibrium bids increase slowly when valu-
ations are low but quickly when valuations are high. When values equal
FIG. 1.—Equilibrium in the all-pay auction.
8 This is invaluable from an experimental perspective since “brute force” approaches to
equilibrium computation take several hours even for auctions with a handful of possible
values and are essentially intractable for auctions of the size considered in our experiment
(Rasooly and Gavidia-Calderon 2020). In contrast, our algorithm is able to compute the
symmetric equilibria of our experimental games in less than a second.

9 See, e.g., Klemperer (1999) for a derivation.
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themaximum x, bids are roughly equal to the equilibrium bid in the first-
price auction; that is, xðn 2 1Þ=n.
Having discussed the predictions of equilibrium (ourmain benchmark),

we now turn to the predictions of the level-k model. As formulated by
Crawford and Iriberri (2007), the model begins with a “naive” type of
player (the level 0) who either bids their valuation (the “truthful” speci-
fication) or otherwise bids any element of the strategy spaceX with equal
probability (the “random” specification). This is meant to capture a
player’s “first thought” about how their opponents will play the game.
Higher types are then defined inductively: for k ≥ 1, a level-k player
submits the bid that maximizes their expected payoff given that their op-
ponents are all level k 2 1 (see Crawford and Iriberri [2007] for interpre-
tation and elaboration). In the following, we will write bk :X→X to de-
note a level-k player’s bidding strategy.
We now derive the behavior of the types. Assume, as in our experiment,

that values are uniformly distributed onX (retreating from the generality
of proposition 1). Given the “truthful” specification (b 5 v), level-0 bids
are then uniform onX. Note, however, that this is also the “random” spec-
ification. We thus see that, quite aside from making the experimental
rules easier for subjects to grasp, imposing uniform values ensures that
the two level-0 specifications lead to identical predictions, a great advan-
tage when it comes to testing the model.
Given that level-0 bids are uniform, and players win the auction if and

only if all opponent bids are strictly below theirs, the level-1 player solves
the problem

max
b∈X

 pðv, bÞ ; vPðwinjbÞ 2 b 5 v
b

x 1 1

� �n21

2 b : (2)

This leads to a corner solution: bidding 0 for all values v ∈ X. To see why
this is true, note that the benefit to such a player of increasing their bid by
1 is the gain in probability ΔP multiplied by their valuation v. If n 5 2,
then ΔP 5 1=ðx 1 1Þ, so the benefit of bidding one more is v=ðx 1 1Þ.
Meanwhile, the cost of bidding one more is simply 1. Since v=ðx 1 1Þ <
1 for all v ∈ X, the benefit of increasing one’s bid is always lower than the
cost—which means that the optimal bid is 0. Moreover, if it is optimal to
bid 0 when n 5 2, it must be optimal for any n ≥ 2: adding more bidders
decreases the expected payoff from submitting any positive bid, while leav-
ing the payoff from bidding 0 fixed.
It is then straightforward to derive the strategies of higher levels. For

now, assume that a level-k player breaks ties by choosing the lowest opti-
mal bid (while this assumption is natural since it allows us to avoid dom-
inated bids, we relax it in sec. V). Given this assumption, a level-2 player
sets bðvÞ 5 1 for every value v ≥ 2, and sets bðvÞ 5 0 otherwise (they are
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indifferent between bids of 0 and 2 when v 5 2, so our tie-breaking rule
comes into play). Similarly, a level-3 player sets bðvÞ 5 2 for all v ≥ 3, and
sets bðvÞ 5 0 otherwise. Thus, for all “reasonably low” levels, a level-k type
player bids

bLK ðvÞ 5
k 2 1 if  v ≥ k,

0 otherwise:

(
(3)

The strategy bLK describes level-k behavior at “reasonably low” levels. At
higher levels, however, this simple pattern breaks down. The strategy bLK

calls for a level-k player with a value of k 2 1 to bid 0, thereby earning a
(certain) payoff of 0. There is another option, however: bid 1 in the hope
of winning when one’s opponents all bid 0. As k rises, this second option
becomes more attractive, and eventually it pays to deviate from bLK. It is
easy to check, however, that level-k players must bid bLK provided that

pðk 2 1, 1Þ 5 ðk 2 1Þ k 2 1

x 1 1

� �n21

2 1 ≤ 0⟺ k ≤ ðx 1 1Þ n21ð Þ=n 1 1,

(4)

an inequality that gives concrete meaning to the phrase “reasonably low”
in the previous paragraph.
Finally, we argue that level k can never coincide with equilibrium, with

the implication that level-k bidding functions must cycle as k→∞. To
prove this, note that by proposition 4 of Rasooly and Gavidia-Calderon
(2020), the discrete all-pay auction with uniform values does not possess
a symmetric equilibrium in pure strategies. Of course, it does have a sym-
metric equilibrium (see our proposition 1), so this must be in mixed
strategies. Now, given our assumption about level-k tie breaking, it is clear
that a level-k player could never choose a mixed strategy. As a result, for
any k ∈ N1, level k can never coincide with the symmetric equilibrium.
Moreover, this means that the level-k predictions must cycle. To see this,
suppose that they did not cycle. Since the set of bidding functions is fi-
nite, there would need to exist some k ∈ N such that bk coincides with
bk0 for all k 0 > k. (Otherwise, a strategy would need to reappear at some
stage—which would necessarily trigger a cycle.) But then bk would be a
symmetric, pure strategy equilibrium, contradicting Rasooly and Gavidia-
Calderon (2020)’s proposition 4.
The following proposition summarizes the findings of the previous

paragraphs.
Proposition 2. For every level k that satisfies (4) and every value

v ∈ X, a level-k bidder sets bkðvÞ 5 bLK ðvÞ. Moreover, there is no k ∈ N at
which bk coincides with equilibrium, with the implication that bk cycles
as k→∞.
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Figure 2 plots both the equilibrium predictions (or technically the
continuous approximation) and level-k predictions (for levels 1–3). As
can be seen, the auction structure has done an excellent job of disentan-
gling the predictions of the models. First, given any reasonable calibra-
tion of the levels, the level-k model predicts bids that are substantially
lower than those predicted by equilibrium. Second, while the equilibrium
bidding function is generally increasing, the level-k bidding functions are
flat at all but one value, providing a second contrast that one can test. Fi-
nally, our nonconvergence resultmeans that the theories remain separated
at arbitrarily high levels. It follows, then, that we have found a powerful
way to disentangle the models, and to do so without abandoning the
uniform-values specification that is so useful when implementing any ac-
tual experiment.
B. The First-Price Auction
It is clearly desirable to find an additional auction structure that sharply
separates the models; that way, we can check the relative performance of
the models in two different strategic settings. To this end, we now exam-
ine the possibility of doing this within the first-price auction. As noted by
FIG. 2.—Comparing level k with equilibrium.
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Crawford and Iriberri (2007), the level-k and equilibrium models coin-
cide (for every k ≥ 1) in the first-price auction with uniformly distributed
values. To break this equivalence, we now suppose that each player’s bid
only goes through with probability p ∈ ð0, 1Þ; otherwise, their bid is can-
celed and they cannot win the auction. We now consider what probability
p maximally disentangles the theories.
Formally, the model structure is much as before; for example, values

and bids are restricted to the same set of consecutive integersX. However,
there are two differences. First, since this is now a first-price auction, a
player pays their bid if and only if they win the object. Second, as justmen-
tioned, each player’s bid is now canceled with probability 1 2 p ∈ ð0, 1Þ,
and a player wins if and only if their (noncanceled) bid is strictly higher
than all the noncanceled bids submitted by their opponents.
As before, we begin by demonstrating that a symmetric equilibrium

exists and is unique:10

Proposition 3. If p ∈ ð0, 1Þ, then the discrete first-price auction has
exactly one symmetric equilibrium.
The arguments used to establish this result are very similar to those

used to prove proposition 1. In particular, the argument is based on the
very same algorithm that constructs the equilibrium. As before, using this
algorithm reveals that the equilibrium bids are well approximated by the
continuous equilibrium, which is now (under uniform values)11

bðvÞ 5 n 2 1

n

� �
v 2

xð1 2 pÞ
np

1 2
1 2 p

1 2 p 1 pðv=xÞ
� �n21� �

: (5)

As can be seen, introducing the possibility that bids are canceledmakes the
bidding less aggressive. If p 5 1, that is, bids are never canceled, our expres-
sion reduces to bðvÞ 5 vðn 2 1Þ=n. In other words, we recover the stan-
dard formula for equilibrium with uniformly distributed values. Moreover,
10 While our uniqueness result still holds under arbitrary value distributions, it now re-
quires the restriction that p < 1; the role of this assumption is to ensure that all bids have
positive probability of winning and thus to rule out equilibria involving dominated bids.
Since this restriction holds in our experiment, this technical point need not concern us
here.

11 Equation (5) may be derived by noting the formal equivalence of our model with a
model with an uncertain number of bidders. One can then apply theorem 1 of Harstad,
Kagel, and Levin (1990). Alternately, one can note that our model is also equivalent (at
least as far as undominated equilibria are concerned) to a model in which each player’s
value distribution has a mass of probability on zero. One can then use the “standard for-
mula” (see, e.g., Krishna [2009])

bðvÞ 5 v 2

ðv
0

GðyÞ
GðvÞ dy,

and insert GðvÞ 5 ð1 2 p 1 pv=xÞn21 (recalling that G(v) is the probability that the max-
imum valuation is v or lower).
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it is easy to check that for any v ∈ X, b(v) is strictly increasing in p. Finally,
it can be shown (using L’Hôpital’s rule) that bðvÞ→ 0 as p → 0 for all v ∈
X. This is also not surprising: if one is almost certain to win the auction
anyway (in the event that one’s own bid is not canceled), then one may
as well bid b ≈ 0.
We now turn to the predictions of the level-k model. Given that level-0

bids are either canceled or uniform on X, a level-1 player solves the
problem

max
b∈X

 ðv 2 bÞPðwinjbÞ 5 ðv 2 bÞ 1 2 p 1
pb

x 1 1

� �n21

: (6)

Since the objective function in (6) is single peaked, it is obvious that the
integer that maximizes this function can be obtained by finding the b ∈
½0, x� that maximizes the function and rounding up or down. In other
words, we have a good continuous approximation of the exact level-1 bid-
ding function. To simplify formulas, we will therefore proceed as if level-1
types could choose any b ∈ ½0, x� (although we will always use the exact
model predictions when analyzing the data from our experiment). Rou-
tine optimization subject to the inequality constraint then reveals that

b1ðvÞ 5 max
n 2 1

n

� �
v 2

1 2 p

p

� �
x

n
, 0

� �
: (7)

As in equilibrium, level-1 bids are increasing in the probability p. More-
over, for all p ≤ 1=n, the level-1 player sets bðvÞ 5 0 for all v ∈ X; that
is, we recover the same corner solution as in the all-pay auction. Intui-
tively, if p is quite low, then there is a large chance that the player’s oppo-
nents’ bids are all canceled—so the player may as well just bid 0 and re-
ceive their entire valuation whenever they “get lucky.”
Our goal is to disentangle the models. To this end, we define the dis-

tance between the theories as

dðpÞ ;
ðx
0

jbðvÞ 2 b1ðvÞjdv : (8)

Of course, the distance d(p) is simply the total area between the (approx-
imated) level-1 and equilibriumbidding functions.Wenow study the prob-
ability p* that maximizes this distance. Recall from above that the level-1
player bids bðvÞ 5 0 for all v ∈ X provided that p ≤ 1=n. Meanwhile, ev-
ery equilibrium bid b(v) is strictly decreasing in p (moving closer to 0).
From this, we see that we could never maximize (8) by choosing some
p ∈ ½0, 1=nÞ. The reason is that increasing p (by a sufficiently small
e > 0) would increase every equilibrium bid b(v) while leaving the level-k
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bids unchanged, thus increasing the distance between the two theories.
In other words, we have the following result.
Proposition 4. p* ≥ 1=n.
Unfortunately, p* cannot be solved analytically. Nonetheless, we can

compute the optimal p numerically given various values of n (see app. C).
We find, for example, that p* ≈ 0:54 if n 5 2, p* ≈ 0:34 if n 5 3, and
p* ≈ 0:26 if n 5 4. Overall, then, choosing p 5 1=n seems like a good
approximation of the optimal probability (the loss in terms of distance
is small). This has the further advantage of making the probabilities eas-
ier for subjects to grasp than the exact solutions would be, so we ultimately
opt for p 5 1=n in our experiment.
Assuming that p 5 1=n, it is then straightforward to derive the exact

level-k bidding strategies. As noted, the level-1 player sets b1ðvÞ 5 0 for
all v ∈ X. As a result, the level-2 player bids 1 (when their value is high)
or bids 0 (when their value is low). Similarly, the level-3 player bids 2
for high values and 0 otherwise. This simple pattern characterizes the be-
havior of level-k bidders when k is “reasonably low” relative to the number
of valuations x 1 1. More formally, we can say the following:
Proposition 5. Fix a set of types K 5 f1, 2, ::: , �kg, let p 5 1=n, and

define

v*ðkÞ 5 k 2 1

1 2 1 2 pð Þn21 :

Then if x is sufficiently large, every level-k type in K bids bkðvÞ 5 k 2 1
for v > v*ðkÞ and bkðvÞ 5 0 otherwise.
Given the parameters ultimately chosen for our experiment (n 5 2,

p 5 1=2, x 5 100), level-k behavior once again cycles at very high levels.
To illustrate this, figure 3 plots the maximum bid submitted by the first
100 levels (the full level-kbidding functions are available in the supplemen-
tary materials). As can be seen, the model produces cycles of length 29
(so level 7 coincides with level 36, which in turn coincides with level 65,
etc.). Moreover, far from cycling locally around the equilibrium predic-
tions, level-k cycles are quite dramatic: the maximum bid ranges from 0
to 20. This is all the more surprising once we realize that all bids above
50 are strictly dominated (by bidding zero), so the highest level-k bid traces
out around 40% of the nondominated strategy space.
Finally, figure 4 compares themodels in the case of n 5 2 and p 5 1=2.

As can be seen, we have once againmanaged to disentangle the theories—
and in a dramatic way. First, given any plausible calibration of the levels—
recall that these are supposed to be in the 1–3 region—level-k bids are
significantly lower than equilibrium bids. Second, while equilibrium bids
are increasing in values, level-k bids are almost always nonincreasing. Fi-
nally, the nonconvergence of level k to equilibriummeans that themodels



testing the level-k model of auctions 413
remain separated even if one were to ascribe implausibly high levels to
the experimental participants.
III. Experimental Design
To test the insights of the previous section, we conducted an experiment
with 84 participants in collaboration with the Nuffield Centre for Exper-
imental Social Sciences. All participants were students at theUniversity of
Oxford and no participant took part in more than one session. The ex-
periment was conducted online and written in oTree (Chen, Schonger,
and Wickens 2016).12

The essential idea of the experiment is straightforward—to implement
the two aforementioned auction structures in a virtual laboratory and ask
subjects how much they wanted to bid. It is then a relatively straightfor-
ward matter to check which of the two theories under consideration
can better predict (and rationalize) the observed bidding behavior.
More precisely, each subject in the experiment participated in a first-

price auction (as described previously) with n 5 2, p 5 1=2 and an all-pay
FIG. 3.—Level-k cycling.
12 The full experimental instructions can be viewed here: https://auction-experiment
.herokuapp.com/.

https://auction-experiment.herokuapp.com/
https://auction-experiment.herokuapp.com/
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auction (as described in the previous section) with n 5 2. Following the
auctions, subjects played a modified version of Arad and Rubinstein
(2012)’s 11–20 game that is proposed in Alaoui and Penta (2016). The
purpose of this game was to allow for a rough calibration of each partic-
ipant’s level.13 Finally, we measured each subject’s risk aversion using the
“bomb” risk elicitation task (Crosetto and Filippin 2013).
Before participating in either of the auctions, subjects were given ex-

tensive quizzes to check their understanding of the rules. They were
not permitted to proceed past the quiz until they had answered a full
set of questions correctly. We view this as an important feature of the
study: subjects are unlikely to make meaningful choices if they cannot
even understand the rules of the game that they are playing.
Each subject bid in two rounds of each of the auction types.14Moreover,

we did not inform subjects of the bids submitted by their opponents in
FIG. 4.—Comparing level k with equilibrium.
13 We use Alaoui and Penta (2016)’s modification of the original game since it prevents
cycling (level-k behavior coincides for all k ≥ 9). As Alaoui and Penta (2016) note, this is
then useful if one wishes to calibrate individual levels without the potentially controversial
assumption that each individual’s level is the smallest possible level that rationalizes their
observed behavior.

14 They were also asked to explain the general considerations determining how they
chose to bid after every second round.
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previous rounds. We made these two choices—only two rounds coupled
with very little feedback—since the level-kmodel is supposed to be amodel
of initial play, as opposed to a model of the outcomes of a long-run learn-
ing process (Crawford and Iriberri 2007).15 In other words, we sought to
test the level-k model within its intended domain of applicability.
Subjects were informed (and regularly reminded) that they would

never bid against the same opponent twice across the rounds of an auc-
tion. That is, we used the “perfect strangermatching” protocol. We opted
for this protocol since the two theories under consideration are static the-
ories—in the sense that they treat the game as a one-shot interaction—
and we did not want to complicate the analysis by introducing learning
or reputational considerations.
Bidding was incentivized through a procedure similar to that em-

ployed in Filiz-Ozbay and Ozbay (2007). In every round, individuals were
asked how much they would want to bid given 10 possible valuations that
they might have. They were informed that they should bid carefully since
one of these valuations would be their actual valuation and they would be
committed to bidding the amount they had entered. In other words, 1 in
10 bids were selected to “count.”Weopted for this procedure, as opposed
to incentivizing every bid, since it allowed us to collect more data given a
fixed number of rounds, thereby further reducing feedback or learning
effects (and making the environment more hospitable to the level-k
model).16

Finally, we randomly allocated the participants into two treatments: an
“integer bid” treatment (to which 2/3 of participants are allocated) and a
treatment in which bids were constrained to be multiples of 5. The idea
here was to check whether varying the bid treatment has the strong ef-
fects predicted by level-k theory or the relatively weak effects predicted
by the equilibrium model. In the level-kmodel, increasing the discretiza-
tion by a factor of 5 increases the predicted bids by roughly a factor of 5,
assuming that levels are sufficiently low for individual behavior to be char-
acterized by propositions 2 and 5 (see the supplementarymaterials for an
exact description of the effects of the bid discretization on the model’s
predictions). In contrast, varying the bid discretization does not have
large quantitative effects on equilibrium bids; for example, in the first-
price auction the average equilibrium bid increases by just 4.7% (again,
see the supplementary materials).
The experiment was preregistered along with a full analysis plan.17 The

experiment also received ethics approval from both the University of
15 Indeed, it is for this reason that Crawford and Iriberri (2007) only test their model
using data from the first five rounds of the experiments they examine.

16 On average, subjects earned £9.60 over the course of around 40 minutes. Total earn-
ings ranged from £3.60 to £16.00 with a standard deviation of £2.34.

17 See https://www.socialscienceregistry.org/trials/8011.

https://www.socialscienceregistry.org/trials/8011
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Oxford’s and Centre for Experimental Social Sciences’ institutional re-
view boards.
IV. Results

A. Pooling the Data
We begin by asking which theory best explains the overall patterns ob-
served in the bidding data. To this end, we pool all the valuations and
bids, compute the mean observed bid for every valuation, and plot this
against the corresponding predictions of the two models. For the mo-
ment, we assume that levels cannot exceed 3,18 and drop the handful of
subjects who submitted at least one dominated bid in one of the auctions.
Figure 5 displays the results for the case of the first-price auction with

integer bids (see also fig. D1 for the treatment in which bids aremultiples
of 5). As found in many prior studies of first-price auctions, we observe
substantial overbidding relative to the (risk-neutral) equilibrium bench-
mark (Kagel and Levin 1995). Indeed, the average bid is around 46% of
the average value, whereas equilibrium predicts that it should be around
20%. However, while the equilibrium model struggles to match the data,
it is clear that the level-kmodel performs considerably worse, predicting
bids that are at least an order of magnitude lower than those commonly
observed. As a result, it is clear that equilibrium provides a substantially
better (albeit highly imperfect) description of the average bidding func-
tion observed in the experimental data.
We then conduct a similar analysis of the all-pay auction. As shown in

figure 6, equilibrium does a somewhat better job of tracking mean bids
in this environment (see also fig. D2 for the case in which bids are multi-
ples of 5). However, overbidding relative to equilibrium is again observed
on average at low to medium values.19 As before, the level-k model pre-
dicts bids that are orders of magnitude below those that are observed
on average, at least if one imposes the restriction that levels cannot ex-
ceed 3. Thus, our initial examination of the data suggests a very clear
ranking of the two models under consideration.
To verify these conclusions more formally, we also compute the root-

mean-square prediction errors of both of the theories. In the case of equi-
librium, this is straightforward since themodel is “parameter free.” In the
18 We impose this constraint because all of the evidence of which we are aware suggests
that insofar as individuals use level-k reasoning, it rarely goes beyond the third level. In-
deed, this is what we find when examining the responses of our subjects in the 11–20 game:
out of those who mentioned level-k reasoning when asked to explain their choices, not one
made a choice consistent with more than three levels of reasoning.

19 The overbidding that we observe is consistent with results from the only other exper-
imental study of IPV all-pay auctions of which we are aware (Noussair and Silver 2006). Un-
fortunately, however, we were unable to obtain the data from this experiment and so were
unable to use it to complement our analyses.
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case of level k, we obtain a prediction by assigning each data point the
level from the 1–3 range that minimizes the model’s prediction error
(this is a generous assumption that will tend to overstate the model’s pre-
dictive performance). Table 1 displays the results. As can be seen, both
models make sizeable prediction errors. Consistent with the graphical ev-
idence, however, the prediction errors of level k are substantially greater
than those of equilibrium.
Next, we examine the effect of varying the bid discretization. Recall

that the level-k model predicts a large effect from changing the discreti-
zation from integers to multiples of 5: bids should increase by roughly a
factor of 5. In contrast, the equilibrium model predicts much smaller
effects. Given these very different predictions, we now conduct a compar-
ison of the integer bid and multiples of 5 bid treatments.
As a preliminary, we confirm that the treatments are balanced, suggest-

ing that the randomization worked as expected (see table D1). Next, we
inspect the average bids across the two treatments and auction structures
(see table D2). As can be seen, changing the bid discretization makes es-
sentially no difference to the first-price auction (in both cases, the aver-
age bid is about 46% of the average valuation). In the all-pay auction, re-
stricting bids tomultiples of 5 does appear to slightly increase the average
FIG. 5.—Predictions and data in the first-price auction.
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bids (which rise from 45% to 50% of the average valuation), but clearly
not in the dramatic way predicted by the level-k model. In neither auc-
tion, then, do the data support the surprising comparative static predic-
tion of level-k theory.
B. Structural Estimates
In light of the evidence above, it is clear that the level-kmodel cannot ac-
count for the observed average behavior, at least when calibrated with a
plausible distribution of types. However, this still leaves at least two issues
unresolved. First, even if level k cannot describe the average bidder, it
is still possible that it accounts for a substantial minority of the observed
FIG. 6.—Predictions and data in the all-pay auction.
TABLE 1
Prediction Errors

T1 FP T1 AP T2 FP T2 AP

Equilibrium 15.1 13.3 14.1 14.3
Level k 21.3 19.8 21.4 24.0
Note.—T1 and T2 denote the integer bid and multiples of 5 treatments; FP and AP ab-
breviate “first price” and “all pay.”
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behavior. Second, it remains to be seen whether the model might be
rescued by allowing for a greater number of possible types. We now ad-
dress both of these issues.
To do this, we follow the literature in estimating a mixture of types

model (see, e.g., Stahl and Wilson [1994], Bosch-Domènech et al. [2002],
and Crawford and Iriberri [2007]). To obtain stochastic versions of the
relevant theories, we assume that subjects submit bids with probabilities
that are proportional to a normal distributionwhosemean is the predicted
bid that they are “supposed” to submit (according to the relevant theory).
More formally, letK ⊂ N1 denote the set of types, indexing equilibriumby
k 5 0 and level-k types in the obvious way. Given that a player i has value
vi ∈ X and type k ∈ K, we assume that the chance they submit a bid
bi ∈ X is given by

Pðbijvi, kÞ ∝ exp 2
1

2

bi 2 bp
jk

� �2� �
, (9)

where bp is the bid predicted by their type (given their valuation), jk is a
noise parameter that controls the variance of their bids, and the constant
of proportionality is chosen to ensure that the probabilities sum to 1.20

This produces a single-peaked distribution whose mode is the predicted
bid bp. As jk →∞, this distribution converges to uniform noise, and as
jk →∞, it converges to a degenerate distribution that places all probabil-
ity mass on the predicted bid bp.
For now, assume that each individual’s type is fixed (though we relax

this inmany of our analyses). Then the probability that an individual sub-
mits a vector of 20 bids bi given their vector of values vi is (assuming in-
dependence of errors)

Pðbijvi, kÞ 5
Y20
i51

Pðbijvi , kÞ: (10)

We assume that the individual we observe is drawn randomly from the
population, and write pk ∈ ½0, 1� to denote the population proportion
of type k (obviously, okpk 5 1). By the law of total probability, the uncon-
ditional probability of their bids is

PðbijviÞ 5 o
k∈K

Pðbijvi, kÞpk , (11)

and so the “likelihood” of all the observed decisions is (combining
eqq. [9]–[11])
20 We also experimented with a model containing logit errors. However, these had the
unfortunate tendency of preferring level 1 to all higher levels even though level-1 predic-
tions were the farthest from the observed bids (recall that level-1 types bid zero regardless
of their valuation).
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L 5
Yn
i51

PðbijviÞ ∝
Yn
i51

o
k∈K

Y20
i51

exp 2
1

2

bi 2 bp
jk

� �2� �� �" #
pk

 !
: (12)

In every estimation exercise, we compute the parameters p 5 ðpkÞk∈K and
j 5 ðjkÞk∈K that maximize the likelihood (12). We then calculate stan-
dard errors with the jackknife. While we consider the case in which indi-
vidual levels are fixed (as above), we also consider the case in which in-
dividual levels are permitted to vary by round—although we do insist
throughout that levels are fixed within a round.21

As a preliminary exercise, we compare an equilibrium-only model with
the level-kmodel in which levels are restricted to 1–3. To avoid introduc-
ing too great an imbalance in the number of parameters between the two
respectivemodels, we restrict both to a single noise parameter j. TableD3
displays the results. As one might have expected from figures 5–6, equi-
librium does a better job than any of the level-k models at explaining
the data, attaining a higher log likelihood in all specifications. This ad-
vantage becomes even greater if we punish the level-kmodels for their ex-
tra flexibility, for example, by using the Bayesian information criterion.
This simply reinforces the conclusion that we reached earlier: equilibrium
does a better job than the level-k model at accounting for the overall pat-
terns in the data.
We now examine the extent to which the level-k model might be sal-

vaged by adding higher levels. To this end, we now estimate a series of
models, gradually adding levels until we reach the point where themodel
cycles. Three main points emerge from this exercise.22 First, while the
level-k model can achieve a higher likelihood than equilibrium once
the full suite of levels is added, it can do this only by placing most prob-
ability on very high levels; for example, in the first-price auction, most
probability mass is placed on level 32. As argued previously, is doubtful
whether we can plausibly ascribe so many thinking steps to participants.
Second, the level-k model fits the data with a very unusual distribution,
placing some probability mass on level 1, none on intermediate levels,
and the rest on the very high levels just discussed. Of course, the idea that
individuals do either one thinking step or 32 thinking stepsmight appear
to be rather strange. Finally, the inclusion of these very high levels is al-
most never recommended by the Bayes information criterion. For all
these reasons, it seems difficult to rescue the level-kmodel through a strat-
egy of adding a very large number of levels.
21 Recall that all bids within a roundmust bemade simultaneously, so there is no possibility
for learningwithin rounds. In contrast, individuals could conceivably learn between rounds—
although the scope for such learning is limited by the near-total absence of feedback.

22 Since the resulting tables are too large to be contained within the appendix, they have
been made available at https://docs.google.com/spreadsheets/d/1qNrerSNlzhqOSkyISZ
L29tgxcjxqW_3wO3refseew3o/edit.

https://docs.google.com/spreadsheets/d/1qNrerSNlzhqOSkyISZL29tgxcjxqW_3wO3refseew3o/edit
https://docs.google.com/spreadsheets/d/1qNrerSNlzhqOSkyISZL29tgxcjxqW_3wO3refseew3o/edit
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Although a pure level-k model appears to be outperformed by equilib-
rium, a final question we investigate is whether a hybrid model might be
able to outperform both. To this end, we now reestimate the model for
all auction structures, allowing for both equilibrium and level-k types
and no longer restricting the model to a single noise parameter j. We also
return to our previous assumption that levels are in the plausible range (1–
3). Table D4 displays the results. As can be seen, most probability mass is
placed on equilibrium—suggesting again that the level-k model fits the
data relatively poorly. However, there is still some probability mass placed
on level-k types. Thus, the results from thehybridmodel are consistentwith
the possibility that the level-k model characterizes the behavior of a small
minority of subjects, even if it struggles to capture the general patterns
in the bidding data.
C. Correlating Levels
We now examine whether individual levels as estimated from the two auc-
tions bear any resemblance to the levels as inferred from a game known to
trigger level-k reasoning: a variant on the 11–20 game proposed by Alaoui
and Penta (2016). To this end, we calculate the level k and precision jk
that maximizes the likelihood of each individual’s bids (i.e., eq. [10]).
Thus, we now assign each individual a definite level, as opposed to a dis-
tribution over levels, and no longer allow for equilibrium types. After do-
ing this for both the first-price and all-pay auction, we then compute each
individual’s level as inferred from the 11–20 game, discarding those
whose implied level exceeds 4.23 Finally, we compute the correlation be-
tween the levels inferred from each auction and the level as inferred from
the 11–20 game.
Figure D3 plots the levels estimated from the first-price and all-pay auc-

tions against the levels as inferred from the 11–20 game. As can be seen,
there is no discernible relationship between the levels, and indeed the
correlations are estimated to be 0.00 and 20.09 in the case of the first-
price and all-pay auctions, respectively.24 From the perspective of level-k
theory, this is rather unexpected. For if levels reflect either cognitive so-
phistication or beliefs about the cognitive sophistication of one’s oppo-
nents—the two leading interpretations of individual levels—then one
would expect to find a positive correlation between individual levels
across games. Conversely, the absence of such a positive correlation
23 We do this partly because such levels are at odds with prior experimental evidence but
also because not one of such subjects invoked level-k reasoning when asked to explain their
choice.

24 This result reflects those of Georganas, Healy, and Weber (2015), who find no corre-
lation between estimated individual levels across two families of games (albeit in a non-
auction setting).
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suggests that individuals are not using level-k reasoning in at least one of
the games.25
D. Subject Reports
Finally, we examine the explanations given by participants as to why they
chose to bid in the way that they did. In particular, we consider whether
they appealed to iterated reasoning.26 Assuming that subjects’ conscious
reasoning was indeed captured by the level-kmodel and further assuming
that subjects did not for some reason wish to lie to their experimenter
about their reasoning, one would expect to see iterated reasoning cited
in their explanations. Conversely, one can take the absence of such re-
ports as evidence that the level-kmodel did not in fact characterize their
conscious reasoning.
In their explanations, the majority of subjects (around 55%) explicitly

indicated an awareness of the basic bidding trade-off: bidding more in-
creases one’s probability of winning, but decreases one’s payoff if one
wins the auction. For example, one subject reported trading off “the
chance of winning versus the reward for winning.”However, the vast ma-
jority of subjects did not appear to use iterated reasoning.27 Indeed, we
categorize responses as invoking iterated reasoning in just two cases.28

To be clear, we are not claiming that the level-kmodel did not charac-
terize the reasoning given by any of the subjects. For example, one subject
(who also bid in line with the model) wrote as follows:
25 One can also ask whether subjects who made different choices in the 11–20 game
made different choices in the auctions (whether or not these choices match up with the
predictions of level-k theory). As shown by table D5, subjects who chose 17 (level 3) in
the 11–20 game tended to bid more aggressively in both auctions than the rest, although
there is little difference in average bids between subjects who chose 18 (level 2) and those
who chose 19 (level 1).

26 A strict definition of iterated reasoning would be reports of the following form: “I bid
in way X because I expected my opponent to bid in way Y, and I expected my opponent to
bid in way Y because I thought they would think I would bid in way Z.” In other words, this
would need to involve (1) a conjecture about the bidding strategies followed by the player’s
opponents and (2) an attempt to ground this conjecture using a conjecture about the con-
jectures of the opponents about the player’s bidding strategy. On a weaker definition, we
would simply require some kind of conjecture about the opponents’ bidding strategy
(along with an attempt to optimize given this conjecture). Since the level-k model allows
for level-1 players, we used this weaker (andmore permissive) definition when categorizing
the reports.

27 All categorizations were independently checked by another researcher who was not
involved in the study. The reader is invited to examine the responses themselves, which
are provided (along with all other nondemographic data generated by the experiment) in
the supplementary materials.

28 In fairness, one should point out that subjects also did not invoke the kind of fixed-
point reasoning presupposed by equilibrium. Thus, it seems doubtful that either equilib-
rium or level k adequately characterizes the conscious reasoning process of most subjects.
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Since my opponent has a 50% chance of their bid being can-
celled, it’s better to keep bids low in hopes theirs gets can-
celled. . . . I raised the bid to more than 1 because in the event
my opponent is using the same strategy and bids very low, I still
have a chance of winning the auction.
Thus, this subject not only considered something like the level-1 strat-
egy (bidding “very low”) but then went beyond it—a clear case of level-k
reasoning.29 What is evident, however, is that reasoning was provided by
only a small minority of subjects, a finding that is also in line with the
choice data outlined in the previous section.
V. Robustness Checks
We now report on the results of a variety of extensions and robustness
checks.
Risk aversion.—While the previous analysis assumed that individuals are

risk neutral, we now consider whether the level-k model might be sal-
vaged by allowing individuals to be risk averse.30 To begin, consider the
all-pay auction. As noted in section II.A, level-1 players (if assumed to
be risk neutral) are predicted to bid 0 (for all values), thereby earning
a certain payoff of zero. If they submitted a positive bid, then they would
be exposed to risk: either their payoff would be positive (if they win the
auction) or negative (if they lose the auction). Now, given that level-1
players choose to bid 0 when they are risk neutral, it is obvious that they
must also choose to bid 0 if they are assumed to be risk averse. Thus, in-
troducing risk aversionmakes no difference to themodel’s predictions—
and also (for this reason)makes no difference to the predictions for high
levels (provided that they are sufficiently low to be characterized by bid-
ding strategy bLK).
While risk aversion cannot improve the model’s performance in the

all-pay auction, matters are more complicated in the first-price auction.
In general, holding the bidding strategies of one’s opponents fixed, in-
troducing risk aversion must (weakly) increase one’s optimal bid. In our
setting, this means that introducing risk aversion can make positive bid-
ding by a level-1 type optimal, thereby bringing the model’s predictions
closer in line with the observed data. Note, however, that introducing risk
aversion also makes equilibrium bids more aggressive (Holt 1980), which
the bids submitted by the subjects did not exactly conform to any of the levels, they
lose, with the subjects bidding a mix of 2’s and 3’s at relatively low valuations.
urse, expected utility maximizers should be approximately risk neutral over
stakes (Arrow 1970; Rabin 2000). Thus, the “risk aversion” discussed here should
ought of as capturing utility curvature within a reference-dependent model
et al. 2019).
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might be expected to increase the predicted accuracy of our benchmark. It
is therefore unclear at the onset whether introducing risk aversion im-
proves the relative performance of the level-k model.
To study this issue more carefully, we assume that every individual i

has constant relative risk aversion (i.e., uiðxÞ 5 xa
i , where xi is the individ-

ual’s payoff and ai > 0 determines their level of risk aversion). We then
estimate every individual’s parameter ai using their choice in the “bomb”
risk elicitation task (Crosetto and Filippin 2013). We then recalculate the
level-kmodel’s predictions for every player using their estimated param-
eter ai (along with their estimated level as in sec. IV.A). We also recalcu-
late the equilibrium predictions on the assumption that every individual
has the average estimated risk aversion parameter of the subject pool
(a 5 0:72).31

Figure 7 displays the results for themain treatment (see also fig. D4 for
the case in which bids are multiples of 5). As can be seen, both the level-k
and equilibrium predictions are now somewhat improved and consider-
ably closer to the actual data. Overall, however, it is clear that equilibrium
still outperforms level k dramatically, a conclusion confirmed by the pre-
diction error rates reported in table D6.
Cognitive hierarchy.—We now ask whether any conclusions might change

if individuals are assumed to best respond to a distribution over levels, as
in Camerer, Ho, and Chong (2004)’s cognitive-hierarchy model. To this
end, we assume (following Camerer, Ho, and Chong [2004]) that levels
are Poisson distributed with mean t. Using standard maximum likeli-
hoodmethods, we then estimate t for the participants in our experiments
using their choices in the 11–20 game, finding that t ≈ 1:9. Finally, we
compute the predictive errors of the cognitive-hierarchymodel and com-
pare thosewith the associated errors for equilibrium. As shown in tableD6,
moving from level k to cognitive hierarchy makes essentially no difference
to the prediction errors. This is not a surprise: obviously, best responding
to a mix of levels between 1 and 3 yields (in our context) very similar opti-
mal bids to best responding to level 2.
Including dominated bids.—As noted earlier, our main analysis excluded

the small number of subjects who submitted at least one dominated bid
on the grounds that such subjects may have misunderstood the rules of
the auction. However, excluding such subjects is a debatable choice, and
we reran all analyses after including such subjects. This did not change
any of our substantive conclusions (see table D6).
Changing the tie-breaking rule.—In the previous analysis, we assumed that

level-k players always chose the lowest optimal bid if multiple bids were
31 The code can be viewed here: https://github.com/Itzhak95/risk_aversion/tree/master.
The a 5 0:72 is obtained after dropping the two outliers who collected 61 or more out of the
62 boxes. If such subjects are included, we obtain a 5 1:8 (risk seeking), in which case allow-
ing nonlinear utility is unable to improve the performance of the level-k model.

https://github.com/Itzhak95/risk_aversion/tree/master
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optimal. While this allowed the model to avoid predicting that individu-
als choose dominated strategies, it is natural to ask whether any of our
conclusions hinge on this assumption. To investigate this, we now make
the opposite assumption—that level-k players always choose the highest
bid out of the bids that they believe are optimal.32 Rerunning our main
analyses, we see that this slightly worsens the model’s fit with the data (al-
though the change is small). This is not a surprise: the main change is
that themodel now predicts some dominated bids, and such bids are very
rare in the data.
Dropping the second round.—As noted in section III, the level-k model is

supposed to be a model of initial play. In order to test the model in its
natural domain, we therefore blunted subject feedback and restricted
the number of rounds to two. Nonetheless, one might worry that even
two rounds are too many to count as “initial play.” To test this possibility,
we reran the analyses after dropping the second round. While this does
somewhat improve level k’s performance, the model remains clearly out-
performed by equilibrium (see table D6).
FIG. 7.—Risk aversion in the first-price auction.
32 Obviously, this does not exhaust the universe of possible tie-breaking rules: one could
also assume that players sometimes choose the highest optimal bid and sometimes choose
the lowest optimal bid.
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Changing the level-0 specification.—The level-k auction model, as formu-
lated by Crawford and Iriberri (2007), assumes that level-0 players either
bid their value (the “truthful” specification) or randomize uniformly over
X. Since the predictions of such a model seem strongly disconfirmed by
the data, one might wonder whether the model might be improved by
choosing an alternative level-0 specification. While our data do not allow
us to absolutely rule this possibility out, there are various reasons to think
that this is not likely to be a fruitful theoretical exercise.
First, as stressed by Crawford, Costa-Gomes, and Iriberri (2013), one

must be careful to ensure that any level-0 specification represents a “strate-
gically naive” assessment of how others will play the game. This is most ob-
viously important if one wishes to connect the model to its standard inter-
pretation as a model of iterated reasoning given some naive but initially
plausible startingpoint. In addition, it is vital to restrict the rangeof possible
level-0 strategies if one wishes themodel tomake anything like definite pre-
dictions in strategic situations, and to be clearly disentangled from rival
models. For instance, if an analyst were allowed to specify that level-0 play
coincided with the symmetric equilibrium, it would be impossible to disen-
tangle the equilibrium from the predictions of the level-kmodel: for every
k ≥ 1, the level-k prediction would simply be the symmetric-equilibrium
strategy.
Thus, if one did want to change the level-0 specification, one would

need to make sure that it represents a psychologically plausible way in
which a player might naively expect others to play. This brings us to
our second point, however: there simply do not appear to be a large num-
ber of such level-0 specifications. Other than the specifications proposed
by Crawford and Iriberri (2007), we are only able to think of one alterna-
tive: bidding uniformly between 0 and one’s value v (modifying their
“random” specification so as to remove dominated bids). However, opt-
ing for this level-0 specification would render the model unable to match
even the general trend of bidding in the most experimentally studied of
all auction formats—the first-price auction with independent, uniform
values (and no possibility of canceled bids).33
33 In this setting, a large number of auction experiments report overbidding relative to
the risk-neutral equilibrium bðvÞ 5 ðn 2 1Þv=n (see Kagel and Levin [1995] for a review).
However, it is easy to see the level-0 specification suggested here would predict bids that are
substantially lower than the risk-neutral equilibrium. As a result, it would result in level-k
predictions that are far too low (at least, given a plausible calibration of the levels). Note
also that other apparently plausible level-0 specifications, such as thinking that one’s oppo-
nents bid half their value, are excluded on the grounds that level-0 reasoning is supposed
to be nonstrategic (whereas bidding a fraction of one’s value quite clearly reflects an at-
tempt to strategically balance one’s chance of winning with one’s payoff if one does
win). Moreover, such specifications imply that level-k bidders should submit a large mass
of bids just above the maximum value bid by level 0 (e.g., L1 players in the all-pay auction
should bid 50 for all v ≥ 51). We do not observe such masses in this experiment or in the
other auction experiments of which we are aware.
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Finally, we note that the level-k predictions as formulated in section II
are robust to a very wide range of level-0 specifications. For example, in
the all-pay auction, level-k bids will be characterized by proposition 2 for
any level-0 specification that satisfies

F ðbÞ ≤
b

x 1 1

� �1= n21ð Þ
, (13)

where F(b) is the probability that the level-0 type bids b or lower (i.e., the
cumulative distribution function [CDF] of the bid). In particular, this
means that proposition 2 will continue to hold provided that the CDF
F(b) is bounded by the uniform CDF from above. Similarly, in the first-price
auction, level-1 players will bid 0 (as in proposition 5) for any level-0 spec-
ification that satisfies

F ðbÞ ≤
n 2 1

n

� �
x

x 2 b

� 	n21

2 1
h i

(14)

for all b ∈ X.34 Moreover, while these inequalities are sufficient for our
level-k characterization to hold, they are absolutely not necessary. For ex-
ample, in the all-pay auction, the level-1 bidding strategy turns out to be
a best response to the empirical bid distribution observed in the experi-
ment, even though that distribution does not satisfy inequality (13).
In light of the reasons above, we think that it is unlikely that one can

find a level-0 specification that is simultaneously nonstrategic, psycholog-
ically plausible, and generates predictions that match the data in both
this and other auction experiments. Ultimately though, this conclusion
is somewhat more speculative than the central conclusion of this study:
that the level-kmodel as specified by Crawford and Iriberri (2007) cannot
predict or rationalize the observed bidding behavior.
VI. Concluding Remarks
In this paper, we have designed and implemented an experiment aimed
at testing the level-k model of auctions. Overall, the evidence would ap-
pear to strongly reject the model. When plausibly calibrated, the model
produces bids that are at least an order of magnitude too low. Moreover,
fitting the model without such a plausibility constraint results in estimated
levels in the 30–35 range, and these levels in turn fail to bear any rela-
tion to levels inferred from the 11–20 game. In addition, changing the
bid discretization has little effect on the observed bids (in contrast to the
model’s predictions), and subjects almost never cite iterated reasoning
34 This inequality comes from checking that a player with v 5 x would rather bid 0 than
any b ∈ X.
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when asked to explain why they bid in the way they did. Thus, while one
might be able to disagree with any of the pieces of evidence separately, it
seems that the evidence collectively casts strong doubt on the model’s abil-
ity to predict or even rationalize the observed data.
This finding might be seen as surprising given that the experimental

environment was carefully chosen to be the level-k model’s natural do-
main of applicability. Individual feedback was severely restricted and (fol-
lowing Crawford and Iriberri [2007]) the number of rounds was restricted
to just two. However, the level-kmodel fared poorly despite the initial-play
setting.
The findings also might be seen as surprising in light of evidence that

the level-k model very accurately captures facets of human behavior in
other settings, whether “beauty contests” (Nagel 1995), coordination games
(Costa-Gomes, Crawford, and Iriberri 2009), strategic communication
(Crawford 2003; Cai and Wang 2006) or zero-sum betting (Brocas et al.
2014). We thus close with some speculations as to why the model appears
to do so badly at predicting bids in auctions despite its successes in pre-
dicting behavior in other areas.
First, recall that the level-k model requires a level-0 anchor, that is,

some sort of naive starting point that forms the basis of the iterated rea-
soning. In many settings, such an anchor is easy to provide. For example,
one’s natural first thought (in a strategic communication setting) is that
one’s opponents will tell the truth, and a natural first thought (in the con-
text of guessing games) is that all possible guesses are equally likely. In
contrast, it is not at all clear how the level 0 ought to be specified in
the setting of auctions. Crawford and Iriberri (2007) select what appear
to be the two best proposals—that subjects either bid their valuation or
randomize uniformly over the strategy space. However, it is not obvious
whether either represents a natural first thought for how one’s oppo-
nents will play. More to the point, it does not seem that there exist more
plausible level-0 specifications than those proposed by Crawford and
Iriberri (2007) (see sec. V for discussion). Thus, the failure of the level-
kmodel in this context may well be down to the lack of a salient and psy-
chologically plausible anchor.
Second, iterated reasoning is cognitively much more taxing in Bayesian

games such as auctions than in the simpler settings to which the level-k
model is normally applied. To calculate one’s optimal action, one must
combine one’s conjecture about one’s opponent’s strategy with their dis-
tribution over types to arrive at their distribution over actions. One must
then solve an (often nontrivial) optimization problem to find the optimal
action given this distribution. Thus, even if a plausible level-0 anchor
were available, it is unclear whether individuals would be able to correctly
solve for the level-1 strategy—and even less clear whether they would be
able to correctly identify the higher order strategies.
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If this is right, it follows that the level-k model should be applied only
in situations that possess both an intuitively appealing “first thought”
along with easily computable best-response dynamics. Rigorously testing
whether these features are indeed necessary for the predictive success of
themodel—along with identifying strategic settings that possess these ap-
parently necessary features—would seem to be an important task for fu-
ture research.
Data Availability
The replication package for this article (Rasooly 2022) can be found in the
HarvardDataverse: https://doi.org/10.7910/DVN/SGHWJI. The package
includes all data used in the empirical sections (see the ReadMe file for
details).
Appendix A

Proofs

A1. Proof of Proposition 1

Since our game has a symmetric and finite normal form, it must have a symmetric
equilibrium (seeHarsanyi [1967] and Cheng et al. [2004] for details). Turning to
uniqueness, we now generalize three lemmas fromRasooly andGavidia-Calderon
(2020) to the case of mixed strategies. Let j denote an arbitrary symmetric-
equilibrium strategy, and for any v ∈ X, let sðvÞ⊆X denote the set of bids that
are submitted with positive probability at value v (i.e., the support at v).

Lemma 1. In any symmetric equilibrium j, sð0Þ 5 f0g.
Proof. Consider a player with v 5 0. If they bid 0, they get (regardless of their

opponents’ strategies) a payoff pðv 5 0, b 5 0Þ 5 0 � Pðwinjb 5 0Þ 2 0 5 0. On
the other hand, if they submit any bid b ≥ 1, they get (given any opponent strat-
egy profile) pðv 5 0, bÞ 5 0 � PðwinjbÞ 2 b 5 2b < 0. Thus, bidding 0 strictly
dominates bidding any b ≥ 1, which means that Pðb 5 0jv 5 0Þ 5 1 in any
equilibrium (and in any symmetric equilibrium). QED

Lemma 2 (monotonicity). Consider any symmetric equilibrium j and consider
any two values v, v 0 ∈ X with v > v 0. Then for any b ∈ sðvÞ and b 0 ∈ sðv 0Þ, b ≥ b 0.

Proof. For contradiction, let us suppose that b < b 0. Since b is submitted with
positive probability when the value is v, bidding bmust be weakly optimal. In par-
ticular, it must be weakly better than bidding b0:

pðv, bÞ ≥ pðv, b 0Þ
⟺ vPðwinjbÞ 2 b ≥ vPðwinjb 0Þ 2 b 0

⟺ b 0 2 b ≥ v Pðwinjb 0Þ 2 PðwinjbÞð Þ:
(A1)

Similarly, since b0 is submitted with positive probability when the value is v0, it
must be weakly better than b:

https://doi.org/10.7910/DVN/SGHWJI
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pðv 0, b 0Þ ≥ pðv 0, bÞ
⟺ v 0Pðwinjb 0Þ 2 b 0 ≥ v 0PðwinjbÞ 2 b

⟺ v 0 Pðwinjb 0Þ 2 PðwinjbÞð Þ ≥ b 0 2 b :

(A2)

Inequalities (A1) and (A2) jointly imply that

v 0 Pðwinjb 0Þ 2 PðwinjbÞð Þ ≥ v Pðwinjb 0Þ 2 PðwinjbÞð Þ: (A3)

Since b 0 > b, and b is a symmetric-equilibrium bid, it must be that Pðwinjb 0Þ >
PðwinjbÞ (for example, one wins with a bid of b0, but not with a bid of b, if all
of one’s opponents bid b—and this happens with positive probability). Since
Pðwinjb 0Þ 2 PðwinjbÞ > 0, inequality (A3) then yields v 0 ≥ v, which contradicts
our initial assumption that v 0 < v. This establishes that b ≥ b 0 as claimed. QED

Lemma 3 (no gaps). In any symmetric equilibrium j, the bids that are sub-
mitted with positive probability are a set of consecutive integers.

Proof. Suppose for contradiction that this were false. Then there must exist
two bids bhigh ≥ blow 1 2 that are submitted with positive probability even though
no bid in between bhigh and blow is submitted with positive probability. Now if types
were to deviate from bidding bhigh to bidding blow 1 1, their payment would fall.
However, their probability of winning would remain unchanged: both before
and after the deviation, they win the auction if and only if all opponents bid blow
or lower. So this deviation would be strictly profitable, implying that this could
not have been a symmetric equilibrium. QED

We now introduce the concept of jump form.
Definition A1. For every bid i ∈ Bj, we define the ith jump ji as

ji 5 vi 1 Pðb < ijviÞ,

where vi is the minimum value v ∈ X such that Pðb 5 ijvÞ > 0. We refer to the
vector of jumps j 5 ð j0, j1, ::: , jmÞ as a jump vector and say that it is increasing
if ji11 > ji for every i ∈ f0, 1, ::: ,m 2 1g.

Under the lemmas outlined previously, this is an equivalent representation of
behavioral strategies.

Lemma 4. Any gapless and monotone strategy that satisfies Pðb 5 0jv 5
0Þ 5 1 may be converted into an increasing jump vector j that satisfies j0 5 0
and j1 ≥ 1. Conversely, any increasing jump vector j that satisfies j0 5 0 and
j1 ≥ 1 may be converted into a gapless and monotone strategy that satisfies
Pðb 5 0jv 5 0Þ 5 1.

Proof. To establish the first claim, take any gapless and monotone strategy
that satisfies Pðb 5 0jv 5 0Þ 5 1. This may be converted into a jump vector by
computing each of the jump points: for every bid i in the support of the strategy,
we identify the minimum value vi ∈ X such that Pðb 5 ijviÞ > 0, and set ji 5 vi 1
Pðb < ijviÞ. Given that Pðb 5 0jv 5 0Þ 5 1, and soPðb 5 0jv 5 0Þ > 0, we know
that v0 5 0. Thus, j0 5 v0 1 Pðb < 0jv0Þ 5 0. Also, given Pðb 5 0jv 5 0Þ 51,
v1 ≥ 1, so j1 5 v1 1 Pðb < 1jviÞ ≥ 1 as claimed.

To show that j is increasing, consider any two consecutive jump points ji,
ji11 ∈ j . If the strategy is monotone, every value that submits a bid b 5 i 1 1 must
be weakly larger than every value that submits a bid b 5 i. So in particular, vi11 ≥ vi .
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This yields two possibilities: either vi11 > vi or vi11 5 vi . In the first instance
(vi11 > vi),

ji11 ; vi11 1 Pðb < i 1 1jvi11Þ
≥ vi 1 1 1 Pðb < i 1 1jvi11Þ
≥ vi 1 1

> vi 1 Pðb < ijviÞ ; ji ,

(A4)

where the final inequality holds since Pðb < ijviÞ < 1 (which in turn holds since
necessarily Pðb 5 ijviÞ > 0). So in that case, ji11 > ji . In the second instance
(vi11 5 vi), we have

ji11 ; vi11 1 Pðb < i 1 1jvi11Þ
5 vi 1 Pðb < i 1 1jviÞ
5 vi 1 Pðb < ijviÞ 1 Pðb 5 ijviÞ
> vi 1 Pðb < ijviÞ ; ji ,

(A5)

where the inequality again holds sincePðb 5 ijviÞ > 0. Either way, then, monoto-
nicity implies that j111 > ji . Since this true for all i, this then implies that that vector
of jumps is increasing. So every monotone behavioral strategy generates an in-
creasing vector of jumps.

To establish the second claim, take any increasing jump vector j that satisfies
j0 5 0 and j1 ≥ 1. To begin, we show that these restrictions imply Pðb 5 0jv 5
0Þ 5 1. To see this, observe that, since j0 5 0 and j0 5 v0 1 Pðb <0jv0Þ 5 v0,
we have v0 5 0. Also, v1 5 ⌊ j1 ⌋ ≥ 1 since j1 ≥ 1. Since v0 5 0 and v1 ≥ 1, it fol-
lows that Pðb 5 0jv 5 0Þ 5 1 as claimed.

We now show how j uniquely pins down the rest of the behavioral strategy.
Take j1. Since v1 5 ⌊ j1 ⌋ is the smallest value that bids 1, and the assumed strategy
is monotone, any values v < v1 must bid 0 with probability 1. Moreover,
Pðb 5 0jv1Þ 5 j1 2 v1 (which may equal zero). Thus, j1 uniquely determines
which values bid 0. Next, take j2. Since v2 5 ⌊ j2 ⌋ is the smallest value that bids 2,
and the assumed strategy is monotone, any values v < v2 must bid less than 2.
Given the previous, this means that any values v ∈ fv1 1 1, ::: , v2 2 1g must bid 1
with probability 1. If v1 5 v2, then Pðb 5 1jv2Þ 5 j2 2 j1; otherwise, Pðb 5 1jv2Þ 5
j2 2 v2. Thus, j2 uniquely determines which values bid 1. Continuing inductively
in this fashion, we see that j is consistent with a unique monotone and gapless
bidding strategy. QED

Having recast strategies in jump form, we can now define our algorithm:
Definition A2. Let ĵ 5 ð ĵ1, ::: ,ĵmÞ denote the output of the following

algorithm:

1. Impose ĵ0 5 0:
2. Starting at i 5 1, find the minimum ji ∈ ð ĵi21, S � such that pðv 5 ⌊ ji ⌋,

b 5 iÞ 2 pðv 5 ⌊ ji ⌋, b 5 i 2 1Þ ≥ 0:
3. If there is no such ji, the algorithm terminates.
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4. There there does exist such a ji, set ĵi 5 ji and repeat (from step 2) for
i 1 1.
We then observe the following.
Lemma 5. The vector ĵ is the only possible symmetric equilibrium of the all-

pay auction.
Proof. Suppose for contradiction that there were some symmetric equilib-

rium j ≠ ĵ . If j ≠ ĵ , there must be some jump at which they differ. Let ji denote
the first such jump (i.e., i is the smallest number such that j ≠ ĵ). There are
two possibilities: ji < ĵi or instead ji > ĵi . We will argue that each leads to a
contradiction.

To see why the first case is impossible, first define pĵðv, bÞ and pjðv, bÞ as the
payoff of a player with a value v who bids b given that their opponents all bid ac-
cording to ĵ and j, respectively. Now recall that, by construction, ĵi is the mini-
mum jump such that

p ĵðv 5 ⌊ĵi ⌋, b 5 iÞ ≥ pĵðv 5 ⌊ĵi ⌋, b 5 i 2 1Þ: (A6)

Since ji < ĵi , this means that

pjðv 5 ⌊ ji ⌋, b 5 iÞ < pjðv 5 ⌊ ji ⌋, b 5 i 2 1Þ: (A7)

But then, given that one’s opponents bid according to j, one should never bid b 5
i with a value v 5 ⌊ ji ⌋. That is, Pðb 5 ijv 5 ⌊ ji ⌋Þ 5 0. But then v 5 ⌊ ji ⌋ cannot
be the smallest value that bids i (contradiction).

To see why the second case is impossible, recall again that every ĵi satisfies

p ĵðv 5 ⌊ĵi ⌋, b 5 iÞ ≥ p ĵðv 5 ⌊ ĵi ⌋, b 5 i 2 1Þ

⟺ ⌊ ĵi ⌋P
ĵðwinjb 5 iÞ 2 1 ≥ ⌊ ĵi ⌋P

ĵðwinjb 5 i 2 1Þ:
(A8)

As a preliminary, note that since the right-hand side is nonnegative,
⌊ ĵi ⌋Pĵðwinjb 5 iÞ 2 1 ≥ 0 and so ⌊ ĵi ⌋ ≥ 1 for every i ≥ 1. Let us record this fact.
Turning to the main argument, fix the value at ⌊ ĵi⌋ but consider now changing

opponent bidding from ĵ to j. If ji > ĵi , then Pjðwinjb 5 iÞ > P ĵðwinjb 5 iÞ. How-
ever, since j and ĵ agree for all previous jumps, Pjðwinjb 5 i 2 1Þ 5 P ĵðwinjb 5
i 2 1Þ : Since ⌊ ĵi ⌋ ≥ 1 (established earlier), this all means that

⌊ ĵi ⌋P
jðwinjb 5 iÞ 2 1 > ⌊ ĵi ⌋P

jðwinjb 5 i 2 1Þ
⟺ pjðv 5 ⌊ ĵi ⌋, b 5 iÞ > pjðv 5 ⌊ ĵi ⌋, b 5 i 2 1Þ:

(A9)

If j is a symmetric equilibrium, this implies thatPjðb 5 i 2 1jv 5 ⌊ ĵi ⌋Þ 5 0. How-
ever, this is impossible: since ji > ĵi , and j and ĵ agree for previous jumps, j must
allocate more probability mass to bids of i 2 1, which means that Pjðb 5 i 2 1jv 5
⌊ ĵi ⌋Þ > P ĵðb 5 i 2 1jv 5 ⌊ ĵi ⌋Þ ≥ 0. QED

By the argument above, there is no possible symmetric equilibrium except for
ĵ . As we noted earlier, however, our game must possess some symmetric equilib-
rium. From this, it follows that it has exactly one symmetric equilibrium (namely,
ĵ). This concludes the proof. QED
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A2. Proof of Proposition 2

See main text.

A3. Proof of Proposition 3

A proof of this result can be easily reconstructed from the proof of proposition 1
(and is available from the author upon request).

A4. Proof of Proposition 4

We argue by induction. First, we show that the desired pattern of bidding holds
when k 5 1. Next, we show that if it holds for any level k 2 1 ∈ K, then it also
holds (provided that x is sufficiently large) for any level k ∈ K.

Starting with the base case (k 5 1), note that level-1 bidders choose a bid
b ∈ X to maximize

p1ðv, bÞ 5 ðv 2 bÞ n 2 1

n
1

b

nðx 1 1Þ
� �n21

(A10)

(inserting p 5 1=n into eq. [6]). Considering this function’s continuous exten-
sion, observe that

∂ ln½p1ðv, bÞ�
∂b

5
ðn 2 1Þ v 2 ðx 1 1Þ½ � 2 nb

ðv 2 bÞ b 1 ðn 2 1Þðx 1 1Þ½ � : (A11)

Since we are searching for the optimal bid, we can just consider the range b ≤ v.
In this range, the denominator of (A11) is nonnegative. Moreover, since v ≤ x
for all v ∈ X, the numerator is negative. Thus, ∂ ln½p1ðv, bÞ�=∂b ≤ 0 and so
∂p1ðv, bÞ=∂b ≤ 0. Since this is true of the function’s continuous extension, it fol-
lows that pðv, 0Þ ≥ pðv, bÞ for every value v ∈ X and every positive integer bid b ∈
X. That is, bidding zero is optimal (as claimed).

Next, we show that if the desired pattern of bidding holds for level k 2 1 ∈ K,
then it also holds (provided that x is sufficiently large) for level k ∈ K. Suppose
then that all players of level k 2 1 bid as proposed. Then they bid 0 when
v ≤ v*ðk 2 1Þ, that is, at ⌊ v*ðk 2 1Þ 1 1 ⌋ distinct values, and otherwise, they
bid k 2 2. Hence, for a level-k player,

PkðwinjbÞ 5

1 if  b > k 2 2,

1 2 p 1 p
⌊ v*ðk 2 1Þ 1 1 ⌋

x 1 1

� �� �n21

if  b ∈ f1, ::: , k 2 2g,

ð1 2 pÞn21 if  b 5 0:

8>>>>><
>>>>>:

(A12)

Given this, it is immediate that b* ∈ f0, 1, k 2 1g; that is, there are at most
three optimal bids. Moreover, pkðv, b 5 0Þ 2 pkðv, b 5 1Þ→ vð1 2 pÞn21 2 ðv 2
1Þð1 2 pÞn21 < 0 as x →∞, and so b* ∈ f0, k 2 1g if x is sufficiently large. Finally,
observe that the latter is optimal iff
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pðv, b 5 k 2 1Þ > pðv, b 5 0Þ ⟺ v 2 ðk 2 1Þ > vð1 2 pÞn21

⟺ v >
k 2 1

1 2 ð1 2 pÞn21 ,
(A13)

that is, iff v > v*ðkÞ (as claimed). QED
Appendix B

Illustrating the Algorithm

In this section, we illustrate the algorithm using two examples. In both, values
are uniform so (in any symmetric strategy profile)

Pðb < iÞ 5 Pðv < ⌊ ji ⌋Þ 1 Pðv 5 ⌊ ji ⌋Þðji 2 ⌊ ji ⌋Þ

5
⌊ ji ⌋
S

1
1

S
ðji 2 ⌊ ji ⌋Þ

5
ji
S
,

(B1)

where S is the number of possible valuations.
Example 1. Consider an all-pay auction with uniform values and n 5 2. To

find the first jump point, we look for the minimum j1 ∈ ½2, S � such that

pðv 5 ⌊ j1 ⌋, b 5 1Þ 2 pðv 5 ⌊ j1 ⌋, b 5 0Þ ≥ 0: (B2)

Clearly, pðv 5 ⌊ j1 ⌋, b 5 0Þ 5 0 since Pðwinjb 5 0Þ 5 0. In addition, Pðwinjb 5
1Þ 5Pðb 5 0Þ 5 j1=S and so pðv 5 ⌊ j1 ⌋, b 5 1Þ 5 ⌊ j1 ⌋ j1=S 2 1. So we look for
the minimum j1 such that

⌊ j1 ⌋ j1
S

2 1 ≥ 0: (B3)

Of course, the solution will depend on S. If S 5 100, j1 5 10 (and similarly j1 5ffiffiffi
S

p
for any square S). If S 5 99, the solution remains at j1 5 10. However, if S 5

101, the solution becomes j1 5 10:1, implying randomization. (One can prove
that, as S →∞, the proportion of solutions that are integer solutions converges
to 1/2.) Let us suppose that S 5 101 so that the first jump is j1 5 10:1.
To find the next jump, we look for the smallest j2 that satisfies

pðv 5 ⌊ j2 ⌋, b 5 2Þ 2 pðv 5 ⌊ j2 ⌋, b 5 1Þ ≥ 0

⟺ ⌊ j2 ⌋ Pðwinjb 5 2Þ 2 Pðwinjb 5 1Þ½ � ≥ 1

⟺ ⌊ j2 ⌋ Pðb ≤ 1Þ 2 Pðb 5 0Þ½ � ≥ 1

⟺ ⌊ j2 ⌋
j2
101

2
10:1

101

� �
≥ 1:

(B4)
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One can check that the solution is j2 5 16:4125, so the equilibrium vector of
jumps starts with (0, 10.1, 16.4125, . . .). Returning to behavioral strategies, this
means that all values v ∈ f0, 1, ::: , 9g bid 0 (with probability 1), value v 5 10 ran-
domizes between b 5 0 and b 5 1 with probabilities .1 and .9, values v ∈
f11, ::: , 15g bid 1 (with probability 1), and finally the value v 5 16 bids b 5 1 with
probability .4125. (Since we have not computed j3, we cannot technically deter-
mine the probability with which value v 5 16 bids v 5 2 but in fact j3 ≥ 17 so
this probability is 12.4125.)

Example 2. Consider now the first-price auction with canceled bids. To find
the first jump j1, we look for the smallest j1 ∈ ð0, S � such that

pðv 5 ⌊ j1 ⌋, b 5 1Þ ≥ pðv 5 ⌊ j1 ⌋, b 5 0Þ
⟺ ð⌊ j1 ⌋21ÞPðwinjb 5 1Þ ≥ ⌊ j1 ⌋Pðwinjb 5 0Þ

⟺ ð⌊ j1 ⌋21Þ 1 2 p 1 p
j1
S

� �n21

p ≥ ⌊ j1 ⌋ð1 2 pÞn21p

⟺ ð⌊ j1 ⌋21Þ 1 2 p 1 p
j1
S

� �n21

≥ ⌊ j1 ⌋ð1 2 pÞn21:

(B5)

For instance, suppose that p 5 1=2, n 5 2, and S 5 101. Then (B5) reduces to

⌊ j1 ⌋ j1 2 101 2 j1 ≥ 0, (B6)

which is almost quadratic in j1. One can check that this inequality is satisfied by
j1 5 11; then ⌊ j1 ⌋ j1 2 101 2 j1 5 112 2 101 2 11 5 9 > 0. On the other hand, it
will not hold if j1 < 11, for then ⌊ j1 ⌋ j1 2 101 2 j1 ≤ 10 � 11 2 101 2 11 5 22 <
0. So the minimum j1 that satisfies the inequality is 11; this is the first jump. This
means that all values smaller than 11 must bid zero (with probability 1), but
the value v 5 11 never bids zero with any probability.
Appendix C

Optimizing p

To find the probability p* ∈ ½0, 1� that maximizes d(p), recall that p* > 0 (from
proposition 5). Moreover, it is obvious that p* < 1: if p 5 1, then dðpÞ 5 0
(whereas dðpÞ > 0 is plainly possible). Hence, p* ∈ ð0, 1Þ, which means that
the optimal p must satisfy the first-order condition

∂
∂p

ðx
0

jbðvÞ 2 b1ðvÞjdv 5 0: (C1)

One can check that bðvÞ ≥ b1ðvÞ for all v ∈ ½0, x�. So (C1) is equivalent to

∂
∂p

ðx
0

bðvÞdv 5
∂
∂p

ðx
0

b1ðvÞdv : (C2)

When n 5 2, standard calculations reveal that
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∂
∂p

ðx
0

bðvÞdv 5
∂
∂p

ðx
0

pv2

2ðpv 2 p 1 1Þ dv

5
∂
∂p

x2 pð3p 2 2Þ 2 2ðp 2 1Þ2 lnð1 2 pÞ� �
4p2

5
x2 ð2 2 pÞp 2 2ðp 2 1Þ lnð1 2 pÞ½ �

2p3 :

(C3)

Similarly, when n ≥ 3, we find that

∂
∂p

ðx
0

bðvÞdv 5
∂
∂p

ðx
0

n 2 1

n

� �
v 2

xð1 2 pÞ
np

1 2
1 2 p

1 2 p 1 pðv=xÞ
� �n21� �

dv

5
∂
∂p

x2 2 1 np ðn 2 1Þp 2 2½ �ð Þ 2 2ð1 2 pÞn
2ðn 2 2Þnp2

5
x2 p nð1 2 pÞn 2 2ð1 2 pÞn 1 n 1 2½ � 1 2 ð1 2 pÞn 2 1½ � 2 np2ð Þ

ðn 2 2Þnðp 2 1Þp3 :

(C4)

Turning to the level-1 bidding function, we find that

∂
∂p

ðx
0

b1ðvÞdv 5
∂
∂p

ðx
v*

n 2 1

n

� �
v 2

1 2 p

p

� �
x

n
dv

5
∂
∂p

x2ðnp 2 1Þ2
2ðn 2 1Þnp2

5
x2ðnp 2 1Þ
ðn 2 1Þnp3 ,

(C5)

where v* 5 ð1 2 pÞx=ðn 2 1Þp.
To find the optimal probability when n 5 2, we now substitute (C3) and (C5)

into the first-order condition (C2), obtaining

ð2 2 pÞp 2 2ðp 2 1Þ lnð1 2 pÞ
2p3 5

np 2 1

ðn 2 1Þnp3 : (C6)

Similarly, when n ≥ 3, we substitute (C4) and (C5) and into the first-order con-
dition, yielding

p nð1 2 pÞn 2 2ð1 2 pÞn 1 n 1 2½ � 1 2 ð1 2 pÞn 2 1½ � 2 np2

ðn 2 2Þnðp 2 1Þp3 5
np 2 1

ðn 2 1Þnp3 : (C7)

Either way, we obtain an equation that can be solved numerically to reveal can-
didates for p*. It is then a straightforward matter to check which of these candi-
dates generates a larger distance. Since our problemmust have a global maximizer
(by theWeierstrass theorem), and the global maximizer must satisfy the first-order
condition, the p satisfying the first-order condition that generates the largest dis-
tance must be the global maximizer.

(C4)
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TABLE C1
Optimal Cancellation Probabilities (Rounded)

n

2 3 4 5 6 7 8

p* .536 .343 .256 .204 .170 .145 .127
Table C1 outlines the solutions for n ∈ f1, ::: , 8g. As can be seen, the solution
is generally quite close to 1=n—so the bound identified in proposition 5 comes
close to identifying the exact solution. Note also that, as might be expected, the
optimal probability p does not depend on the scale parameter x.
Appendix D

Tables and Figures

FIG. D1.—The first-price auction when bids are multiples of 5.



FIG. D2.—The all-pay auction when bids are multiples of 5.
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FIG. D3.—Comparing estimated levels. The top panel plots levels as estimated from the
first-price auction against levels as inferred from the 11–20 game. The estimated correla-
tion between these variables is 0 (95% confidence interval: 20.37 to 0.37). The bottom
panel plots levels as estimated from the all-pay auction against levels as inferred from
the 11–20 game. The estimated correlation between these variables is 20.09 (95% confi-
dence interval: 20.44 to 0.30).
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FIG. D4.—Risk aversion (multiples of 5 treatment).
TABLE D1
Balance Table

Integer Bids Multiples of 5 p-Value

Mean age 31.4 32.0 .29
Share male .54 .43 .33
Share mathematics .39 .38 .95
Share humanities .24 .14 .36
Share social sciences .30 .29 .93
440
Note.—This table displays how demographics (age, sex, and subject) vary between the
two treatment groups. The column “p-value” reports t-tests of the hypothesis that the rele-
vant variable is on average equal across the groups.



TABLE D2
Average Bids
First Price
441
All Pay
T1
 T2
 p-Value
 T1
 T2
 p-Value
Average bid
 23.6
 23.0
 .85
 22.2
 25.4
 .12

Average value
 50.9
 49.6
 .27
 49.4
 50.8
 .89

Ratio
 .46
 .46
 .45
 .50
Note.—This table reports the average bids across two treatments and auction structures.
The column “p-value” reports t-tests of the hypothesis that the relevant variable is on aver-
age equal across the groups.
TABLE D3
Comparing Equilibrium and Level k

T1 FP T1 AP T2 FP T2 AP

BNE LL 24,407.9 24,332.7 21,024.7 21,042.2
BIC 8,820.5 8,670.2 2,053.1 2,088.1

L1 LL 24,530.4 24,501.2 21,088.8 21,128.6
BIC 9,065.4 9,007.1 2,181.3 2,260.9

L1–L2 LL 24,530.4 24,501.2 21,085 21,126.9
BIC 9,070.1 9,011.7 2,177.4 2,261.2

L1–L3 LL 24,530.1 24,501.2 21,071.1 21,120.7
BIC 9,074.3 9,016.4 2,153.4 2,252.6
Note.—This table reports the log likelihoods and associated Bayes information criteria
values for four different structural models. In the first model, equilibrium is the only type.
The subsequent models are populated by level 1 types, level 1 and 2 types, and level 1, 2,
and 3 types, respectively.
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TABLE D5
Bids by Estimated Level

First Price All Pay

Average
Bid

Average
Value Ratio

Average
Bid

Average
Value Ratio

L1 19.8 48.8 .406 22.1 51.8 .427
L2 20.8 51.6 .403 21.4 47.8 .447
L3 25.7 51.2 .502 26.6 49.7 .536
Note.—This table reports the average bids and valuations of the subjects who respec-
tively chose 19 (level 1), 18 (level 2), and 17 (level 3) in the 11–20 game.
TABLE D6
Robustness Checks

T1 FP T1 AP T2 FP T2 AP

Risk aversion BNE 19.4 17.9
Level k 26.9 22.7

Cognitive hierarchy BNE 21.7 18.2 19.7 18.8
Level k 31.3 23.8 26.6 29.6

Dominated bids BNE 22.6 19.4 19.5 19.0
Level k 30.8 29.9 22.7 26.9

Tie breaking BNE 21.7 18.2 19.7 18.8
Level k 30.3 29.5 23.4 26.6

Dropping round 2 BNE 18.4 18.2 18.3 17.4
Level k 26.5 29.0 22.2 24.0
Note.—This table reports the root-mean-square prediction errors of the relevant theo-
ries following a series of robustness checks. In every case, level-k predictions are obtained
by assigning each data point the level from the 1–3 range that minimizes the model’s pre-
diction error (a procedure that will tend to overstate the model’s predictive performance).
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